
PoseVEC: Authoring Adaptive Pose-aware Effects using Visual
Programming and Demonstrations

Yongqi Zhang
George Mason University

USA
yzhang59@gmu.edu

Cuong Nguyen
Adobe Research

USA
cunguyen@adobe.com

Rubaiat Habib Kazi
Adobe Research

USA
rhabib@adobe.com

Lap-Fai Yu
George Mason University

USA
craigyu@gmu.edu

Figure 1: PoseVEC has two authoring stages for creating pose-aware visual effects: offline editing and online testing. Upon
loading an input video, PoseVECwill switch to the offline editing stage. PoseVEC also supports editingwith video demonstration,
users can directly interact with the video canvas to add pose-related configuration to the node program. For example, Users can
scrub the video timeline to create a squatting-down pose recognizer(red node in node canvas). When users finish with their
node program, they can switch to the online testing mode to see the pose effect from another video or in front of a live webcam.
©Pexels

ABSTRACT
Pose-aware visual effects where graphics assets and animations
are rendered reactively to the human pose have become increas-
ingly popular, appearing on mobile devices, the web, or even head-
mounted displays like AR glasses. Yet, creating such effects still
remains difficult for novices. In a traditional video editing work-
flow, a creator could utilize keyframes to create expressive but
non-adaptive results which cannot be reused for other videos. Al-
ternatively, programming-based approaches allow users to develop
interactive effects, but are cumbersome for users to quickly express
their creative intents. In this work, we propose a lightweight visual
programming workflow for authoring adaptive and expressive pose
effects. By combining a programming by demonstration paradigm
with visual programming, we simplify three key tasks in the author-
ing process: creating pose triggers, designing animation parameters,

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0132-0/23/10.
https://doi.org/10.1145/3586183.3606788

and rendering. We evaluated our system with a qualitative user
study and a replicated example study, finding that all participants
can create effects efficiently.

CCS CONCEPTS
•Human-centered computing→ Systems and tools for interaction
design; User centered design.

KEYWORDS
Visual effects authoring, motion graphics, pose recognition, Pro-
gramming by Demonstration
ACM Reference Format:
Yongqi Zhang, Cuong Nguyen, Rubaiat Habib Kazi, and Lap-Fai Yu. 2023.
PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Program-
ming and Demonstrations. In The 36th Annual ACM Symposium on User
Interface Software and Technology (UIST ’23), October 29–November 01, 2023,
San Francisco, CA, USA. ACM, New York, NY, USA, 16 pages. https://doi.
org/10.1145/3586183.3606788

1 INTRODUCTION
Human-aware motion graphics refer to graphical assets and ani-
mations that can be rendered reactively to changes coming from
tracked biometric data such as face, hand, or body pose. These types

https://orcid.org/0000-0002-9159-5016
https://orcid.org/0000-0001-9234-9960
https://orcid.org/0009-0007-9781-0032
https://orcid.org/0000-0002-2656-5654
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3586183.3606788
https://doi.org/10.1145/3586183.3606788
https://doi.org/10.1145/3586183.3606788


UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Figure 2: Examples of pose-aware visual effects. Left: A dance
matching effect and a counter effect Instagram filter that
show the number of dance poses the user could replicate
successfully[29]. ©Petricore Right: A stylized text-shaking
animation for a marketing campaign[27]. ©Shotopop

of content are growing in popularity in many creative domains like
visual effects in films or interactive augmented reality (AR) filters
in mobile applications such as Snap, Instagram, or Tiktok. In par-
ticular, pose-aware visual effects—motion graphics designed to be
triggered or controlled by a user’s body pose has gained a lot of
attention in sport tutorials, AR lens and video effects creation. Fig-
ure 2 shows some examples of pose-aware visual effects, which we
henceforth refer to as pose effects. However, creating adaptive and
expressive pose effects still remains a challenging task for visual
effect designers. Traditionally, these effects are often produced by
using keyframe-based approaches [4, 19? ] where animations are
baked into the video timeline. As a result, the output pose effects
are non-adaptive, which means the designers cannot reuse a pose
effect on another video or on a live video stream. For instance, when
creating a pose effect similar to the one shown in Figure 2, if the
person in the video slightly turns around, or changes to a different
pose, then the effect designer will have to adjust the existing ani-
mations to adapt to the new changes in poses. This cumbersome
process makes it difficult for the designer to reuse an existing effect
or adapt it to a new creative idea.

In recent years, various dedicated tools such as Lens Studio,
Spark AR, and Tiktok Effect House have been created to promote
developing pose effects programmatically, with the aim of mak-
ing the authoring workflow both expressive and adaptive. This
approach gives designers a lot of flexibility to fully customize the
low-level details such as how a pose is tracked and how pose data is
transformed and mapped into the video animation. This flexibility
empowers users to create more expressive effects. More importantly,
the created effect is now an executable program that could be used
on another input video. This “reusability” benefit is significant
because it promotes community sharing and experimentation.

However, programming-based workflow is notoriously difficult
for non-technical designers. In order to create a pose effect, design-
ers typically need to accomplish three key technical work. Figure 3
provides an overview of these tasks. 1) Pose recognition: they first
need to set up a pose recognizer from the input videos, which often

Figure 3: Current workflow using Lens Studio to create a
pose effect: 1) pose recognition: obtain T-pose joint data us-
ing a provided function and load a T-pose video into the
system to acquire T-pose data; 2) animation design: storing
and transforming the pose data into animation parameters
using another script; 3) rendering: Using a body tracking
tracker to associate a virtual effect with body parts, and mod-
ifying the movement trigger response script to set up the
trigger response for the T-pose effect.

requires them to manually write various functions to obtain joint
configurations, setting up an algorithm to perform pose matching,
and fine tune the detection threshold. 2) Animation design: in this
step, users transform low-level pose data like joint index, distance,
or angle into animation parameters and establish some parameter
mappings between these data and the graphics that they want to
animate. 3) Rendering: finally, they need to establish a render loop
for that can render graphical assets based on the animation param-
eterizations in step two and the pose recognition events in step one.
All of these steps are tedious and time-consuming as they require
significant technical expertise in handling low-level pose data and
writing event-driven animation codes.

In this paper, we investigate a visual creative workflow for au-
thoring adaptive and expressive pose effects. Our approach lever-
ages both Programming by demonstration (PbD) and visual pro-
gramming paradigms to simplify the programming-based workflow
for non-technical designers. Specifically, we allow a user to inter-
act with both a video canvas and a node programming canvas to
craft a pose effect. For node programming, we adapt the dataflow
programming model [35, 38] to the task of crafting interactive pose
effects. Our model consists of five types of nodes to assist in pose
recognition (e.g., pose recognizer node & logic node), animation
design (data node & transform node) and rendering (render node).
Users can connect one node to another to craft an effect and see it
rendered on the video canvas in real-time. In addition, users can
directly interact with the video canvas to quickly specify complex
pose configurations such as pose skeleton data, joint data, or pose-
relative asset positioning. This unique combination allows us to use
the video canvas as both an output panel and a companion editor,
simplifying the visual programming workflow even further.

To this end, we developed a proof-of-concept web authoring
application called PoseVEC (Pose-awareVisual EffectCreator). Our
goal is to use PoseVEC to examine how users could use both PbD
and visual programming in crafting expressive and adaptive pose
effects. PoseVEC supports both video from a live webcam input or
from an uploaded file. To enable adaptive behaviors in pose effects,
we leverage a one-shot pose embedding machine learning (ML)
network [34] to perform real-time pose matching on the source
video. This core detection mechanism is represented as a node



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

in PoseVEC. More importantly, users could use other nodes in
PoseVEC to iteratively add animation behaviors on top of the initial
pose detection node. This process allows a user to use PoseVEC to
quickly create pose effects that are both expressive and adaptive.
The resulting effects can be reused on a different video or in a
live video with minimal or no configuration needed. In a sense,
PoseVEC empowers users to craft reusable template effects rather
than baked-in effects. It could enable novel visual effect applications.
For example, video editors could save editing time by developing a
pose effect once and apply it to new videos or to existing videos
with compatible poses. Designers could use PoseVEC to mock up
new AR lens effect by designing on an upload video and testing on
the the live webcam view.

We performed two evaluations to assess the effectiveness of our
tool: a first-use study to gather feedback on our authoring workflow
and the usability of PoseVEC, and a replicated example study to
demonstrate the utility and expressiveness of PoseVEC. In summary,
our contributions include:

• The design of a new approach that combines PbD and visual
programming to help users author adaptive & expressive
pose effects using human poses.

• The instantiation of this workflow in a proof-of-concept web
authoring system called PoseVEC. PoseVEC provides users
with a node graph model that was designed specifically to
ease pose effect authoring. It also integrates direct video
interaction to further simplify and speed up user workflow.

• A qualitative evaluation and a replicated examples demon-
stration to examine the usability and utility of PoseVEC.

2 RELATEDWORK
2.1 Pose Effects Applications and Authoring
Authoring poses effect refers to the task of adding visual effects to a
video that involves human subjects. These visual effects can either
be directly applied to human subjects(e.g., contouring the body part)
or be driven by human actions to create the illusion that the assets
are part of the video and respond to the pose movement. There are
two main approaches to author pose effects:post-production and
the programming.

The post-production approach is more prevalent in filmmak-
ing, where video editors use tools such as After Effects to add
keyframes for graphical assets and animation to the video timeline.
Despite the rich features available in these software to help users
in motion graphics creation and editing, it may be too complex
for amateurs to learn to use. To address this challenge, researchers
have attempted to streamline the motion graphics creation process
for amateurs. For example, Katika [13], is an end-to-end tool for
authoring motion graphics videos that aim to help users understand
the process of motion graphic creation and create motion graphic
videos without external guidance. Similarly, PoseTween [19] is a
system designed for novice users to create virtual object animations
by leveraging human motion. In contrast, our work focuses more
on the programming approach. In particular, we investigate how to
simplify the process of authoring pose effects using programming
workflow. Compared to the post-production approach, developing
effects programmatically allows the creator to have more creative
freedom.

Many complex and novel applications of interactive body-based
experience using programming workflow have been explored. For
instance, Anderson et al. has built a Mirror-based augmented reality
system to record and learn physical movement sequences [6] This
system uses the body-tracking technique and skeleton comparison
to provide posture guidance and feedback in real-time. Another
example is PoseBlocks [14], a block-based programming toolkit
designed for educating students on building interactive physical
movement-based experiences. This toolkit incorporates AI-powered
face, hand, body tracking technique into blocks for students. Re-
alitySketch [36] leverages interactive sketching to parameterize
real world objects and create interactive in-situ AR visualizations
driven by those parameters.

Moreover, some research focuses on virtual puppetry techniques
to create animations for non-human objects, where virtual objects
are manipulated through physical control such as keyboard con-
trol and body-tracking sensors. For instance, Chen et al propose
an interactive system that allows novice users to scan and ani-
mate real-world objects by employing a deformation method to
process skeleton information and object geometry [8]. Similarly,
Seol et al. proposed a real-time motion puppetry system that allows
users to manipulate the motion of non-living creatures naturally
through direct feature mapping and motion coupling [32] In all
of these examples, the high barrier of entry associated with the
programming-based approach is apparent, as it typically requires a
team of researchers or engineers to write programs from scratch in
order for users to create pose effects. Our research makes the first
attempt into looking at how to simplify this workflow, such that
normal designers could also directly learn and create pose effects.

2.2 Visual Programming for Interactive
Animations

Visual programming is a common approach to reducing program-
ming complexity, including declarative programming, dataflow pro-
gramming, or block-based programming. These approaches typi-
cally present users with a visual abstraction in the form of blocks
or nodes. Each of these nodes could represent a source of data or
functions or operations to be executed. By setting up and connect-
ing these nodes, users could construct a program in a declarative
manner. Dataflow programming is most often used in helping users
work with complex 3D rendering pipelines to produce shaders [33]
or materials [3]. In contrast, our research focuses on helping users
create interactive behaviors. To this end, numerous dataflow pro-
gramming models have been developed for a wide variety of tasks
such as gesture programming [15, 21], animations [28, 31], vector
drawing [12], and VR programming [10, 38]. And yet, none of these
works have focused on pose effects design. More recently, social
media platforms like Tiktok and Snap have started introducing
creator tools for users to create AR filters based on body tracking,
allowing users to create and share interactive pose effects. However,
their dataflow programming is not specific to pose effect design. In
designing PoseVec, we identified three key tasks for pose effect pro-
gramming and developed a set of nodes and authoring interactions
to simplify these tasks. Briefly, these features support creating pose
recognition, animation design, setting up the rendering loop, and
refining and test. See Sec. 3 for more task details.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Figure 4: Overview of how a user could author and test a pose effect using PoseVEC. Here the user is creating an effect that
could dynamically render the angle value of the right knee on the video. Left: The PoseVEC interface in the offline editing
mode. Right: The PoseVEC interface in the online tracking mode. In the offline editing mode, the steps (in black numbered
annotations) for creating a pose recognizer are as follows: (1) The user uploads a video to PoseVEC. (2) He can scrub the video
timeline to select a pose of interest. (3) He presses "Pose Recognizer" button. (4) A pose recognizer node will add to the video
canvas. Additionally, the steps (in blue numbered annotations) for creating a pose-related data node through joint selection on
video canvas are shown: (1) The user selects the right hip, knee and ankle joint from the skeleton. (2) He presses the "Joint
Angle Data" button under data tab. (3) A Joint Angle Data node is added to node program, which will output selected joint angle
information when the node program runs. In the online tracking mode, the user can see the pose effect happening on the video
canvas and observe the data flow in the pose program. ©Pexels

2.3 Integrating Visual Programming with
Programming by Demonstration

One main issue of visual programming systems is that it can be
slow for users to describe complex behaviors quickly. For example,
when describing geometric configurations of a particular pose of
interest, it is usually faster and easier for users to provide a sys-
tem with some examples rather than constructing the example in a
declarative manner. To this end, several recent works have started
integrating programming by demonstration components into vi-
sual programming systems. For example, in GestureStudio [22],
each gesture is recorded and visualized in a timeline block, which
later can be assembled with other gestures or attached callback
action. Similarly, Gesture Knitter [24] allows designers to provide
hand gesture demonstrations first, then convert them into primitive
blocks. This approach enables the creation and customization of
complex gesture recognizers.

In addition, recent research utilized this new workflow approach
in AR experience authoring. GestureAR [37], for example, enables
freehand AR authoring and AR interactive experience. In the au-
thoring process, users start by recording hand gestures, which are
then associated with virtual content behaviors using a visual pro-
gramming interface. Subsequently, they can test interactive content
in real-time. Similarly, Rapido [18] focuses on video prototyping
using AR-enabled mobile devices. Designers first draw sketches

and demonstrate user intention in a video embedded with AR infor-
mation. Then they use Rapido to convert the video prototype into
an executable state machine, such that they can switch between
these representations to test and refine the prototype. Teachable
Reality [25] employs vision-based interactive machine learning
to author tangible AR prototypes in-situ, by enabling the user to
detect, train, bind, and author physical-virtual interactions.

Inspired by these works, we adopt a similar strategy in the new
problem domain of pose effect authoring. Existing commercial
workflows that adhere to the "No Inferencing" PbD model, as pro-
posed by Myers et. al. [26].), often require users to complete tedious
programming tasks (see Figure 3-1) in order to create pose effects.
In contrast, we follow the “sophisticated AI Algorithms” PbD model
and leverage a pre-trained one-shot pose embedding model [34] to
accelerate the process of creating and fine-tuning a pose recognizer
node. Another key idea in our PbD approach is to enable users to
interact directly with the video canvas to provide complex pose
configurations to the node program. Users could interact with the
pose skeleton joint on the video to select a joint of interest, compute
joint-wise parameters like distance and angle, or position assets
relative to some joints. By identifying and offsetting these tasks
to the video canvas, we create a more streamlined programming
workflow for pose effect designers.



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

3 SYSTEM OVERVIEW
In this section, we outline the key components of our system and
illustrate how these components are used to produce a pose effect.
We follow a hypothetical user, Alice, as she designs a pose effect
illustrated in Figure 4. We show how Alice could craft this pose
effect using the visual workflow in PoseVEC without having to
resort to using any explicit programming.

For this effect, Alice wants to display an overhead text that shows
the joint angle of the right knee while the person is squatting down.
The text is anchored to the person’s head and moves along with the
head movement during squatting. Please refer to the supplementary
video for the complete design process and the final pose effect.
Detailed definitions of the pose program and node designs are in
Section 4. Alice starts by uploading a video of someone doing the
similar squat pose that she found online.
Pose Recognition. The pose recognition trigger is the most impor-
tant component in PoseVEC as it drives pose effect and animation to
occur. After Alice uploads a video to the scene, she drags around the
slider bar to select an interesting pose. Then, she presses the ’Pose
recognizer’ button under the recognizer tab to add pose recognizer
to the node program. As her design goal is to create a pose effect for
a squat-down video, she adds a standing pose and a squatting pose
trigger to the node program. See Figure 4 (black numbered annota-
tions) for an illustration of these steps. Please refer to Section 4.2
for more technical details of the pose recognition node.
Animation Design. Next, Alice needs to obtain joint angle of the
right knee and then render this value on top of the person’s head.
Using PoseVEC, Alice needs to add two more nodes to the current
node program: the Joint Angle Node from the Data Node category
and the Single Text Render node from the Render Node category.
First, she creates a Joint Angle Data node by selecting the right hip,
knee, and ankle joints. This Joint Angle Data node will output the
selected joint angle information as the node program runs. Then,
she adds a Single Text Render node to the node program, which
will automatically add text to the video canvas. She then drags the
text to her head and holds it for one second to anchor the text to
her head. We explain this anchoring operation in more details in
the System Design section below (Figure 5). Lastly, she saves this
anchoring information by clicking on the render node. To make
the text more intuitive, she also inputs "Angle" as the prefix of the
final text. Finally, she connects the Joint Angle Data node to the
input of the Single Text Render node to complete the pose effect
design. See Figure 4 (blue numbered annotations).
Rendering. Now, Alice needs a logical condition that controls the
timing of the appearance of this pose effect so that it only appears
while the person is squatting down. She adds a During node from
the Logic node category. This During node takes two boolean inputs
and constantly outputs a boolean value. It outputs true as long as
input 1 is true before input 2 turns true. In this context, Alice uses it
to ensure that the pose effect is triggered only when the transition
of poses, from the squatting position to the standing position, is
detected. She then connects the squatting down pose trigger to
input 1 of during node and the standing pose trigger to input 2.
Finally, she connects the output of during node to the input of the
joint angle node for completing this node program. See Figure 4,
bottom-left).

Refining and Testing. After Alice finishes all node connections,
she switches the offline editing mode to online tracking mode. Im-
mediately, she can see that the right knee joint angle is highlighted
while the person is squatting down. This is because the similarity
score in the squatting pose recognizer is below the threshold, lead-
ing to a true signal to trigger the animation. Alice can also observe
how data flow from one node to another at some key moments.
(See Figure 4, right)

Once Alice is satisfied with the pose effect, she can upload an-
other video of a squatting pose or turn on the webcam to test the
pose effect. Alternatively, she can upload a different sport video and
refine the pose program slightly to adapt the same pose effect to a
different sport pose. All she needs to do is to drag around the video
slider and adding more pose recognizers to the current program.

4 SYSTEM DESIGN
We designed PoseVEC to help users craft expressive pose effects
using visual programming. To make the system easy to use for
non-technical designers, we have three main design goals:

(1) Visual workflow: providing a node programming UI that can
support all key tasks in programming pose effects, includ-
ing asset import, pose recognition, animation design, and
rendering.

(2) PbD via video interaction: simplify the programming work-
flow by allowing users to directly interact with the input
video stream to specify pose-related configurations for the
node program.

(3) Ease of testing: providing visualizations and tools that allow
users to quickly see results, test, and refine the pose effect
program.

4.1 Programming a Pose Effect
Figure 4 shows an overview of PoseVec. A user can craft a pose effect
by interacting with both the video canvas and the node canvas. A
user can start by creating an input video source. We support both
live webcam stream and offline video upload. Upon selecting an
input video source, PoseVEC will switch to the editing mode.

Editing with Nodes. In the editing mode, a user can add graph-
ical assets (Figure 4, top-left) to the video canvas and modify them.
They can also add nodes to the node canvas to construct pose effects.
Note that the node program remains inactive during this stage as
there is no data flow in the connections. Our node program follows
the dataflow programming model [38] where connected nodes form
a direct graph and data can flow from the leftmost source nodes
(e.g., pose recognizer & nodes) to the rightmost sink nodes (e.g.,
render nodes). Users can establish connections between nodes by
dragging an edge from one node and connecting it to another node.
While dragging the edge, input slots that have different input types
will be disabled, allowing users to easily identify which input slots
can be connected.

Editing with Video Demonstrations. During editing, users
could interact with the video canvas to provide additional pose-
related configurations to the node program. Table 1 provides an
overview of which nodes could be created via the video canvas,
these nodes are marked with “video-linked”. Video-linked nodes
can store pose-related data and can monitor and update its stored



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Figure 5: PoseVEC supports anchoring to the skeleton op-
tion. To do this, users can drag and hold an asset (e.g., the
text “SQUAT DOWN”) for one second, then PoseVEC will
highlight the closet joint to which the asset can be anchored
with a yellow line. This anchoring information could then be
stored in the render node that controls the asset movement
(e.g., MoveTo Node) so that the anchoring information can
be applied during rendering. ©Pexels

data. For example, to create a pose recognizer node, users could
scrub the video timeline to select the desirable pose and click on the
pose recognizer node button on the UI. Likewise, selecting a joint
on the pose and clicking on a Joint ID data node will create a data
source for the corresponding joint. A user can also add, position,
or anchor graphical assets to the pose to more easily define how an
asset should be rendered relative to the selected pose. Selecting an
asset and clicking on a render node will add it to the node canvas.

Testing Mode. To test the node program, a user can switch
to the online tracking mode. In this mode, “source” nodes like
recognizer and data will start propagating data to the rest of the
node graph. For example, the pose recognizer node will leverage
a pose similarity ML model to output a true trigger event if the
stored pose is similar to the current pose in the video window. The
data node will simply output the data that was set when the node
is created. Eventually, when the data reaches the “sink” render
nodes, the assets on the video canvas are rendered accordingly,
creating the resulting animations of the pose effect. Running the
node program in this way gives users flexible options to test the
pose effect. They could see the effect on a static frame, a playback of
a video file, or a live webcam stream. Note that in this mode, users
cannot modify graphical assets or nodes, they can only observe the
behavior of the node program and switch back to the editing mode
to refine the pose effect. When the node program is executed, we
render line animations to visualize how the data moves through
the graph to help users better understand the model. See Figure 4
(bottom-right).

4.2 Node Types
Now we will describe in more details the design of PoseVEC’s node
model. A complete description of our node model is included in
the Appendix. Overall, we have five main types of nodes. These
nodes were designed specifically to support three main tasks in
authoring pose effects: pose recognition (pose recognizer node &
logic node), animation design (data node & transform node), and
rendering (render node).

4.2.1 Recognizer Node. When added to the node canvas, PoseVEC
runs a one-shot pose embedding network to transform the cur-
rently selected pose on the video canvas in to a pose embedding
vector. Pose embeddings are 2D projections of pose skeleton data,
where similar poses are embedded close to each other. This allows
us to measure the similarity distance between two poses, akin to
how word embeddings enable computing the distance between
two words in NLP-based systems. We use Pr-VIPE [34] due to its
robust performance in one-shot pose recognition. Most notably, the
Pr-VIPE model was designed to be view-invariant, which means
that pose effects created using PoseVEC would work with varying
camera angles. The pose embedding vector is then stored internally
in the recognizer node.

When the user switches to the online tracking mode, our system
also computes a pose embedding vector for every new frame in
the video window. When this data is available, all recognizer nodes
currently in the node graph will perform a similarity check between
the stored pose vectors and the current pose vector on the screen.
We use L2 distance to estimate a similarity score. If the resulting
score is smaller than a user-defined value, the pose recognizer
node will continuously output true signals. This user-defined value
serves as a threshold and is empirically set to three. The user can
quickly fine-tune the threshold to his desired level of strictness by
switching the video source or using a live webcam, while observing
real-time changes.

4.2.2 Logic Node. Logic nodes can take pose recognizer nodes as
inputs to construct conditional logics. Users can use logic nodes to
create more interesting pose recognition behaviors. The input and
output values of logic nodes are boolean values. There are two main
categories of logic nodes: single-pose logic nodes and dual-pose
logic nodes.

Single-pose logic nodes accept only one input. These nodes are
used to create basic boolean operations. Specifically, trigger node
outputs a single true value when the input value changes from false
to true. It acts as a switch that is triggered by a change in the input
value. Constant boolean node contains a toggle that outputs true
(on) when the toggle is switched on, and false (off) when the toggle
is switched off. Reverse logic node outputs the opposite value of its
input.

Dual pose logic nodes typically take two or more pose recognizer
nodes as inputs. Or node output true if any of the input is true.
During node outputs true while the first input is true and until
the second input is true. Sequence node outputs true only if both
inputs had turned true sequentially. These nodes can be used to
craft more complex behaviors. For example, with Or Node, users
could chain multiple pose recognizer nodes together to create a
more robust recognizer for a certain pose. During node is useful



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 6: Distribution of participants’ programming experience (top) and visual authoring experience (bottom).

for rendering animations that should only appear within a time
range. And sequence node can be used for incremental tasks like
counting.

4.2.3 Data Node. A data node is a complementary “source” to the
pose recognizer node. It contains values useful for animating a
motion graphics effect around the human body. These values can
either be pose-related data or variables. The pose-related data could
include joint locations, distances, angles or even pose embedding
vectors. Data node actively monitors the skeleton pose on video
canvas and computes output pose-related information. To create a
pose-related data node, the user must first select the joints from the
2D estimated pose skeleton on the video canvas and then choose
the type of data node the user wants to create. Additionally, variable
nodes are used to store and manage numerical or vector data, and
they can be directly added to the node canvas.

4.2.4 Transform Node. A transform node contains mathematical
expressions and transforms the data in the data node into anima-
tion parameters. Some example operations supported by Transform
nodes include standard arithmetic operations (plus, minus, mul-
tiply, divide), vector operations (L2Distance, scalar), conversions
(normalization, number to text), and comparison.

4.2.5 Rendering Node & Graphical Assets. In PoseVEC, users can
add by interacting with the asset panel(Figure 4, orange rectangle
annotation). After adding, users can design and adjust the assets by
dragging it on the video canvas. We provide options for working
with primitive 2D shapes, texts, imported images and GIF anima-
tions. Users can customize their look (e.g., sizes, colors, and styles)
or group assets together into a single object.

To render an asset, a user selects it on the video canvas and
clicks on a render node. A render node will be added to the node
canvas. A render node is a type of “sink” node, it only receives data
from other nodes. Render nodes represent render functions that
are executed on a group of graphical assets when receiving true
signals.

PoseVEC provides different kinds of functions such as asset
placement and movement, as well as adjusting asset opacity and
color. In addition, PoseVEC provides special render nodes that
contain a predefined asset group assigned with a specific render
function. More importantly, it also exposes animation parameters
as input for customization.

In particular, we define Joint Angle Annotation node and Joint
Distance Annotation node, which are designed to compute joint-
related information constantly and display that information on the
human body directly. We also have a GIF animation render node for
displaying and controlling GIF animation, and a Single Text Render
node that accepts text input dynamically and displays that text.

A common rendering operation in pose effects is anchoring an
asset to a pose joint in the video. PoseVEC simplifies this operation
using video canvas interaction. When a new asset is added to the
video canvas, by default, it is anchored to the video canvas. The
user can anchor an asset to a joint on the pose skeleton by dragging
and holding the asset for one second. A yellow line indicator will
pop up to help users confirm the selected joint (Figure 5). Releasing
the mouse click button will associate the joint identifier with the
asset. After this assignment, any subsequent operations to set the
position of the asset will record the position relative to the selected
pose joint.

4.3 Implementation Details
We develop PoseVEC as a web application using Typescript. We use
Fabric.js [30]. for canvas rendering and Animation.js [9]. for anima-
tion rendering. Our node graph model is based on Litegraph.js [5].

For ML capabilities, we use Tensorflow.js [2] and Mediapipe [20].
Specifically, we use Mediapipe to perform real-time 2D pose estima-
tion on the incoming images from the video window. We support
both uploaded video and live webcam video. We convert a pre-
trained checkpoint of the Pr-VIPE model [34] into binary files that
could then be loaded to the browser at run time. This model is then
used to compute pose embedding vectors from the estimated pose
skeleton data.

To improve playback and pose detection performance, we pro-
vide users with a script to pre-process the video file before up-
loading it to PoseVEC. The script computes pose skeleton and its
corresponding pose embedding vector for each frame, and store all
data into a JSON file. A user could then load both the video and the
JSON file into our system.

5 USER EVALUATION
We conducted two studies to assess the usability and utility of
PoseVEC. The first study was a first-use study with novice users
to help us assess the system’s usability and threshold. The second



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

study is a replicated example study to examine the utility and
expressiveness of the system.

A more controlled experiment to compare PoseVEC with a base-
line would be difficult because there is no clear baseline. PoseVEC
focuses on pose-based expressions, which is not a common fea-
ture in video editing tools. Some commercial solutions like Lens
Studio can support authoring body tracking based effects, but cur-
rent workflow still requires a significant amount of programming
knowledge. As our workflow design is geared toward designers,
we wanted to first conduct this qualitative evaluation to assess
the system’s usability and examine the validity of our workflow
for pose effect design. Although we did not test it with experts,
our replicated example studies revealed some insights about what
experts could achieve using our tool.

5.1 Participants
We recruited 12 participants to conduct our first-use study (5 males,
6 females, 1 prefer not to disclose; aging from 19 to 30). We selected
users with some programming and visual effect creation experience
(Figure 6). In general, most of our participants have some program-
ming experience and have used AR lens filters. All of them have
some experience in creating motion graphics using at least one type
of commercial software.

5.2 Procedure
Each participant spent about two hours in the study. We began the
session by presenting an overview of PoseVEC, followed by three
tutorials of increasing difficulty for the participants to practice. For
each tutorial, we showed the output effect of a node program and
asked them to replicate the same effect. We then introduced the
nodes that would be used for the tutorial and guided them through
completing the example. The tutorial session lasted for about 50
minutes.
Open-EndedExploration Session. In this session, we first showed
our participants some pose-based effects that we created. We then
asked them to describe a pose-based effect they would like to create
using PoseVEC based on the examples we provided. During creation,
participants could use the documentation of PoseVEC as a refer-
ence. They could ask questions about the system for clarification.
When participants were satisfied with the results they created, they
were asked to fill out the Likert scale questions (partially adapted
from the SUS questionnaire [7]) as well as some open-ended ques-
tions. The session lasted about 60 minutes. We compensated the
participants for their time.

5.3 Results and Discussion
Figure 8 shows an overview of the questions and the ratings given
by participants for PoseVEC. All participants were able to explore
PoseVEC and create unique pose-based effects. We show some
examples in Figure 7. Please refer to the supplementary videos for
more details on the participants’ creations. In general, participants
agreed that PoseVEC helped them create what they had in mind,
(Mean = 4.67, SD = 0.49). P6 commented “I am able to apply most
of my imagination including using all the nodes introduced to me to
create motion graphics”. P10 commented “It has lots of flexibility in
creation”.

Figure 7: Screenshot of pose effects created by participants
using PoseVEC. Original videos ©Pexels

System Usability. In Q2 "I found the system very cumbersome to
use" (Mean = 1.50, SD = 0.52), most participants agree that our sys-
tem is not cumbersome to use because its UI is straightforward and
similar to that of other software (like the blueprint in UnrealEngine),
and its keyboard control is similar to others. They found the node
programming and its operation useful because "it visualizes vari-
ables and connections I have made for constructing motion graphics."
(P2). P4 commented that "The operation like dragging assets and
nodes to the scene is straightforward.". P8 commented that "The node
programming makes the logic flow more modular. It breaks down into
smaller steps so that you can modify to a higher degree."
System Expressiveness. In Q4, "I feel like I could easily and
quickly try out creative ideas by using this system." (Mean = 4.50,
SD = 0.80) and Q5, "I feel like I could explore many alternative
designs quickly by using this system." (Mean = 4.42, SD = 0.67),
many participants agreed that they could try out creative ideas and
explore many alternative design options by using PoseVEC. Several
participants specifically mentioned that the use of pose recognizer
helps them create design quickly. P10 commented that "Normally I
would use keyframes to create motion graphics, which I have to go
back and forward to find the perfect keyframe in the video. But with
this pose recognizer, I can drag the slider and add it to the scene, it
is easier than my current workflow.". P1 mentioned how easy it is
to apply the same effect on different videos: "I take a pose from
one video and convert it to a pose recognizer, then I can use the same
recognizer and nodes on other videos." P3 said that the design of
logic nodes is convenient. He was able to "quickly construct complex
behavior using existing logic nodes."

Specially, all of the participants rated positively on how pose-
related nodes like joint angle annotation and joint distance annota-
tion nodes can speed up their creation process (Q7, Mean = 4.75,



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Figure 8: Percentage stacked bars showing the participants’ ratings on PoseVEC after the open-ended exploration session.

SD = 0.45). P12 commented "I can use joint distance annotation node
to visualize the distance between joints, which helps me make deci-
sions in designs". P4 said "It is nice because I don’t need to do extra
programming to implement it. I just add it to the scene and it is ready
to go." P2 commented "I like it because once I define joint as input,
this node handles the rest."
Technical Expertise. When asked whether our system requires a
high level of technical expertise (Q3, Mean = 3.67, SD = 0.78), half
of our participants rated it positively while the other half had a
neutral opinion. For participants who have a positive view on this,
they said there is a learning curve for this system but the tutorials
and documentation provided make it manageable. Those who had
a neutral view pointed out that the logic nodes and data flow may
not be common knowledge for someone with no programming
experience. However, both sides agreed that people need to take
some time to understand the concept and explore the system. The
results of the first-use study showed that themajority of participants
(10 out of 12) felt confident using our system (Q6, Mean= 4.33,
SD=0.98). One participant described it as feeling natural to use,
while another participant had a negative rating towards the system
However, both of them mentioned that they needed more time to
explore the system on their own to fully master it.
Workflow Comparison. In answering the question "If you have
to produce this result again, would you use your existing workflow
(software), or would you consider using this system?, 67% of the
participants choose our system over their current workflow. Several
participants who are relatively new to visual effects share a common
belief that existing software is mainly designed for other types of
functionality, which can be difficult for them to learn how to create
the same effects. As a result, they prefer to use our system for
expressive pose-based effects as they find the learning curve to be
relatively mild.

Some participants who have more experience using visual effect
editing software have different perspectives on this question due to
some specific needs in their current workflow. One pointed out that
"Our system is more user friendly but it lacks some extra customization
for graphical design. For showing pose-based related graphics this is
the easiest one I have seen. but for creating other graphics, it lacks a bit
of power" (P9). P9was referring to being able to create and customize
more expressive animation such as spinning that our tool currently
do not support well. P5 noted that since mainstream expressive AR
lenses tend to focus on facial expressions, she prefers to use existing
software for those purposes. However, for pose-based expressive

lenses, she finds our tool to be more suitable since it is specifically
designed for that purpose. P11 shared similar comments, "If this
tool can be integrated into the software I use, I definitely will use that
to improve my workflow."
Application of Pose Effects. In response to the question "how
would you use the output pose effect?", the majority of participants
(10/12) mentioned that they would apply it to a workout training
video. They believe that PoseVEC can help them improve their
workout forms, prevent injuries as well as increase workout ef-
ficiency. They believe that the interactive visualization of poses
can help people learn better. Some participants expressed interest
in creating motion graphics for workout poses. Moreover, a few
participants mentioned that PoseVEC can be used for animation
creation and video editing. P12 said "I would like to use it in video
editing so that I can add effects on specific moments." She said that
she could use PoseVEC to combine her pose and some gif effects to
create more expressive motion graphics.

In summary, the feedback from our novice users indicates that
novice visual effect creators could learn the programming model of
PoseVEC and use the system to produce the effect that they want.
These findings also suggest the following key benefits of PoseVEC:

(1) Our approach of combining video interaction with pose
recognition is straightforward and user-friendly.

(2) The specialized pose-based node design saves users from per-
forming complex data transformations; instead, they could
focus more on their creation process.

(3) Our visual programming workflow enables users to craft
complex poses without requiring explicit programming.

5.4 Areas for Improvement
We also collected feedback from participants when they disagreed
with the rating questions for future improvement.
UI Controls. Several participants commented on the need for UI
improvements and better controls on asset properties. P10 sug-
gested using icons to represent buttons: "When I am doing design, I
used to look for icons, not text buttons." Participants also reported
that it was sometimes inconvenient to scroll up and down between
video canvas and node canvas to edit the nodes and see the effect:
"Not being able to increase the size of node canvas makes it difficult
to read and do operation node canvas." (P9). They suggested that
adding a customization for the node canvas window can solve this
issue. Moreover, they also suggested to add a variety of styles and



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Figure 9: Keyframes of the three replicated examples: YouMove [6] Yoga Tutorial (top), PoseTween [19] Basketball (middle),
Kinetic Typography (bottom). Original videos ©Pexels

properties to current assets such as gradient color (P12, P3) and
color filters (P8).
Animation and Workflow. Several participants recommended
PoseVEC should add more render nodes to enable more precise
control over animation movement. They requested functionalities
to trace animation paths using brushes (P1) or joint movements
(P12) as paths that can be edited later on. This would give them
greater control and flexibility in designing movement animations.

6 REPLICATED EXAMPLE STUDY
To show the utility and expressiveness of the authoring workflow
in PoseVEC, we conducted a replicated example study and recre-
ated three complex pose effects from examples. We followed the
Type 1 Demonstration study approach that Ledo et al. had char-
acterized [17]. The first example is an interactive Yoga tutorial
inspired by the YouMove system [6]. The second example is an
interactive basketball dribbling effect inspired by the PoseTween

system [19]. The third example called “Just Do It” is a kinetic typo-
graphic effect inspired by a collection of effect we found online [27].
Figure 9 shows some keyframes of the examples that we produced.
The full demonstrations of these replications can be found in the
supplementary video.

6.1 YouMove’s Yoga Tutorial
The goal of this example is to showcase how PoseVEC can be used
to create interactive exercise tutorial content. A unique feature of
the YouMove system is pose guidance. Using an augmented mirror,
a user could receive real-time feedback about her own pose when
striking that pose for a period of time in front of the system. The
system could also provide feedback to the user’s performance with
some on-screen texts.

To reconstruct this key feature, we first use the elapse time data
node and the comparison transform node to create a time delay
trigger. The trigger will fire True signals after the user strikes a pose



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

for a period of time. Connecting to this delay trigger, we further
design the pose guidance feedback text rendering mechanism. To
do this, we need to convert pose similarity scores to performance
rating text. We obtain current pose information on the video and
then compute similarity scores with a target pose using a com-
bination of pose-related data nodes and a vector math node. We
then normalize the scores to values between zero and one using a
transform node, and convert them into performance text using a
"number to string" transform node. This performance text serves
as input for the render node. With this program, the text can be
rendered while the user was holding the pose, providing real-time
feedback on the similarity between the user’s current pose and a
target pose of a Yoga instructor.

6.2 PoseTween’s Ball Dribbling
This example aims to demonstrate the ability of PoseVEC in creating
interactive animations driven by animation parameters. The key
challenge of PoseTween is to recreate the basketball dribbling and
shooting effects. We need to create a hand-bouncing and hand-
shooting behaviors for the virtual ball.

For the first effect, the ball should exhibit a vertical movement
that corresponds to the user’s hand. The movement of the ball must
also synchronize with the up-down movement of the person’s hand
movement. To allow users to control the ball movement with their
hands, we used a joint angle data node to capture the angle of
the user’s elbow joint. This data is then normalized into a value
between zero and one using a transform node so that it can be
used to control the animation timeline of the ball. We uploaded
a basketball dribbling GIF animation as a render node. Then we
anchored the GIF animation to a desired location near to the hand
joint. We then connected the aforementioned transform node to
the GIF animation rendering node, so the elbow angle in the person
pose can be used to drive the timeline of the GIF animation. As a
result, when the user raises his hand (i.e., the elbow angle is low),
the animation seeks to the beginning (near the hand); and when the
user lowers his hand(i.e., with a high elbow angle), the animation
seeks to the end (e.g., near the floor). Finally, we used a change
opacity node to hide this render node when the user performs the
shooting pose by connecting it to the shooting pose recognizer.

To ensure that the first effect only occurs before the shooting
effect, we added a new pose recognizer for the ball-shooting pose,
and then used a during node that connects the ball-dribbling pose
recognizer and the ball-shooting pose recognizer. For the shooting
effect, we also uploaded a basketball shooting GIF animation as
a render node and anchored it to the user’s hand. To ensure that
the user only saw this animation when the he was performing a
shooting ball pose, we used a change opacity node to hide this ani-
mation when the ball-dribbling pose occurred. We then connected
the shooting pose to a ball-shooting animation.

6.3 “Just Do It” Kinetic Typography
In the original collection, the artists at Shotopop studio created
many different kinetic typography effects where the text “Just Do
It” are stylized and animated dynamically to various athletic poses.
We attempted to create an example in the style of this collection.
Briefly, for this effect: 1) the texts would initially show up at the

user’s feet and gradually move to the user’s shoulders; 2) as the user
performs a jumping jack pose motion, we would dynamically stylize
the text by changing its color and line distance parameters. There
are two main tasks involved in creating this example: animating the
color, opacity, and positions of the text and implementing logical
conditions to control the changes in response to the jumping jack
motion.

For the first task, we combined the recognizer node with the
during node to ensure that the computation occurred only when
users were performing a jumping jack pose. Then we obtained
the joint location of a wrist from the data node. By computing
the height of the wrist location between two jumping poses, we
converted it into an animation parameter that controlled animation
render nodes.

For the second task, we use the moveTo render node to render
keyframed transformations of the text. This node allows us to record
a beginning state and ending state for the input text, and it will
render the interpolated changes in between these two states. We
made the size and the line distance slightly bigger for the end state
to create the expanding effect for the text. We then anchored the
text to the user’s feet as the starting location of the movement and
then to the user’s shoulder as the ending location. Additionally, we
also added the change opacity node for the appearing animation,
and the change color node to alter the text’s color.

7 DISCUSSION
7.1 Applications Beyond Social Media Videos
Many examples in our current paper draw inspiration from social
media themes like dances and sports. Although not extensively
tested, PoseVEC can also be used for other applications such as how-
to videos, kinesiology assessments, or even rehabilitation exercises.

The essence of how-to videos is providing step-by-step instruc-
tions for users to follow along. With PoseVEC, designers can create
an interactive how-to video that supports users learning at their
own pace and provides real-time feedback. For example, in a how-
to-squat video, each step of squatting can be represented by a pose
recognizer node, and a Sequence node can be used to represent
the transition between steps. More importantly, key joints such as
knee joints can be highlighted to emphasize a correct pose move-
ment and avoid injuries. Also, users’ movement can be tracked and
visualized on screen in real-time, and their performance can be
evaluated. All of these can be done by using a combination of Joint
Data node, transform node and render node.

Kinesiology assessments focus on evaluating human movement,
strength, and flexibility. Adding visual effects on top of these assess-
ments can help individuals identify their weaknesses and under-
stand their movement patterns better. For example, a sit-and-reach
test can be constructed similar to the pose program from YouMove’s
yoga tutorials. Instead of guiding users to follow a yoga pose, we ask
them to follow a sit-and-reach pose. We would use a Joint Distance
node to measure the distance between the hands and the feet, and
compute performance scores with a target distance with transform
nodes. Then, we can display the real-time performance result on the
video screen while the user is holding that pose. Future work in this
direction could consider adding more nodes tailored for kinesiology
assessment such as measuring body flexibility.



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Overall, the combination of PbD with direct manipulation ap-
proach in PoseVEC facilitates a streamlined authoring workflow.
This allows users to focus on their creation of pose-aware visual
effects and apply them to a variety of motion-driven applications.

7.2 Limitations and Future Work
More Complex Visual Effects. Our work suggests several in-
teresting directions for future research. The field of pose-aware
visual effects has a rich design space. We would like to incorporate
depth estimation [16] into our current workflow to create more
pose-aware graphics according to changes in the pose size. For
example, as a user walks away from the camera, the graphic could
resize accordingly. Moreover, it is worth exploring a combination
of multiple techniques such as scene segmentation and continuous
motion tracking to create more complex effects such as rotoscoping.
PoseVEC is currently limited to prototyping single-person pose ef-
fects, it would be valuable to extend the workflow to explore group
interactions such as collaborations and competitions. To enable
this, PoseVEC has to incorporate a multi-person pose tracking tech-
nique [11] to replace the current Mediapipe backend. In addition,
creating pose effects for groups would require the use of new node
designs. For instance, we could create a group exercise counter
which counts as the entire group completes a set of exercises. Al-
ternatively, we could create an animated text effect that responds
to the distance between two dancers on screen.
Multimodal ML-based Recognizers. Although PoseVEC focuses
specifically on pose-effect authoring, the framework in PoseVEC
could potentially generalize to authoring effects based on other
types of discrete ML-based recognizer like sound, effect, facial ges-
ture, or hand gesture. A direction for future work is to explore
extending PoseVEC into a general authoring tool for multimodal
ML-based recognizers.
Mistake Handling in PoseVEC. PoseVEC currently leverages an
off-the-shell pose embedding model called Pr-VIPE [34] to handle
pose matching. This model has been shown to be effective against
view angle changes and self-occlusion. However, false positives
might still occur. PoseVEC allows users to tune the behavior of the
recognizer using threshold or by combining multiple recognizer
nodes together. However, since we are focusing on the authoring
aspect of PoseVEC, we have not evaluated it in a production use
case where false positives are much more difficult to control. Future
work should consider how to fine-tune or even retrain Pr-VIPE on
more domain-specific pose dataset (e.g., dance) to enable export and
production workflow in PoseVEC. Another possibility for future
extension is to integrate pose editing techniques such as those in
PoseTween[19] to correct for bad pose detection in user videos.
Portability Assessment. One benefit of PoseVEC node program
is that a resulting node program could be re-applied to another
video. Although we did not formally assessed this portability bene-
fit, we demonstrated it in two examples in Section 6. Specifically,
We applied the “Just Do It” (Sec. 6.3) effect to other videos with
different subjects performing the same movement and applied the
“Ball Dribbling” (Sec. 6.2) effect to another video with the same
subject performing a slightly different movement. We found that
in the former, effect transfer works well because the animation
parameters were defined solely based on pose joint data (i.e., Just

Do It). However, in the latter example, when the parameters depend
on non-joint data such as the distance between a person’s hand and
the ground floor, more adjustments are needed to transfer the effect
to a new video. These empirical findings suggest that with user
adjustments, PoseVEC effects can be applied to videos with similar
movements. To improve effect portability, future work could fo-
cus on automatically inferring and updating animation parameters
based on multiple examples, similar to the Gamut system [23].
Limitations of PbD approaches and UIs. A common drawback
of PbD approaches is that they do not support low-level customiza-
tion well. Our system does not suffer from this drawback since users
can use nodes to customize the behavior of an effect. However, this
level of customization depends on the set of available nodes. In
our user evaluation, we found that more experienced users usually
requested richer node functionalities like animation design and fa-
cial expression that PoseVEC is not currently supporting. Feedback
from users in our user study suggests that there is still room for
improvement in the user interface of our tool. For instance, when
making connections between nodes, it would be helpful to show
hints or suggestions about which nodes could be connected. This
would prevent non-technical users from making mistakes. While
PoseVEC has an inspector panel that lists all graphical assets and
their associated render nodes, it would be beneficial to allow users
to preview the animation details of each render node, making it
easier to modify each render node. It would be helpful to provide a
library of node programs and templates for designers to browse for
ideas and improvise.
Evaluation Limitations. Our approach aims to make pose effect
authoring easy and accessible to a broader audience through PbD
and visual programming. Our current user evaluation, however,
only examines the immediate usability and intuitiveness of our
approach. Understanding the true potential utility of the tool or
how it fares with other tools require longitudinal evaluation, and
remain as future work.

8 CONCLUSION
We present PoseVEC, a lightweight web-based authoring tool to
create expressive and adaptive pose effects. To flatten the learning
curve for users, it provides a visual workflow using node program-
ming. It combines programming by demonstration and visual pro-
gramming to allow users to create pose recognizer directly from the
input video stream, obtain low-level pose information from node
programs, and easily convert it into animation parameters. More
importantly, it also relieves the burden of non-technical designers
for testing. The visualization of node programming allows users to
quickly test and refine the pose effect program, making it easier for
them to iterate and improve their designs. We evaluated PoseVEC’s
usability and utility through two stuides: first-use study with novice
users and a replicate example study. All users from the first-use
study could create expressive pose effects efficiently.

ACKNOWLEDGMENTS
We are grateful to the anonymous reviewers for their constructive
comments. This research is supported by an NSF Graduate Research
Fellowship and an NSF CAREER Award (award number: 1942531).
We are also thankful for Adobe Research’s support to the GMU’s



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

DCXR Lab. We would also like to thank Ana Cardenas Gasca for
providing initial feedback on our early-stage prototypes.

REFERENCES
[1] ]adobepremierepro [n. d.]. Professional video editing software | adobe premiere

pro. https://www.adobe.com/products/premiere.html
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[3] Adobe. 2023. Create 3D Models on Desktop and in VR. https://www.adobe.com/
products/substance3d-modeler.html. [Accessed 04-Apr-2023].

[4] Adobe. 2023. Motion graphics software | Adobe After Effects — adobe.com.
https://www.adobe.com/products/aftereffects.html. [Accessed 05-Apr-2023].

[5] Javi Agenjo. 2022. litegraph.js. https://github.com/jagenjo/litegraph.js?files=1.
[Accessed 05-Apr-2023].

[6] Fraser Anderson, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2013.
YouMove: Enhancing Movement Training with an Augmented Reality Mirror. In
Proceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for
Computing Machinery, New York, NY, USA, 311–320. https://doi.org/10.1145/
2501988.2502045

[7] John Brooke. 1995. SUS: A ‘Quick and Dirty’ Usability Scale, Usability Evaluation
in Industry.

[8] Jiawen Chen, Shahram Izadi, and Andrew Fitzgibbon. 2012. KinÊtre: Animating
the World with the Human Body. In Proceedings of the 25th Annual ACM Sympo-
sium on User Interface Software and Technology (Cambridge, Massachusetts, USA)
(UIST ’12). Association for Computing Machinery, New York, NY, USA, 435–444.
https://doi.org/10.1145/2380116.2380171

[9] Julian Garnier. 2023. anime.js. https://animejs.com/. [Accessed 05-Apr-2023].
[10] Epic Games Inc. 2023. Unreal Engine. https://www.unrealengine.com/. [Accessed

04-Apr-2023].
[11] Umar Iqbal, Anton Milan, and Juergen Gall. 2017. PoseTrack: Joint Multi-person

Pose Estimation and Tracking. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 4654–4663. https://doi.org/10.1109/CVPR.2017.495

[12] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending
Manual Drawing Practices with Artist-Centric Programming Tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–13. https://doi.org/10.1145/3173574.3174164

[13] Amir Jahanlou and Parmit K Chilana. 2022. Katika: An End-to-End System for
Authoring Amateur Explainer Motion Graphics Videos. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
502, 14 pages. https://doi.org/10.1145/3491102.3517741

[14] Brian Jordan, Nisha Devasia, Jenna Hong, Randi Williams, and Cynthia Breazeal.
2021. PoseBlocks: A Toolkit for Creating (and Dancing) with AI. Proceedings
of the AAAI Conference on Artificial Intelligence 35, 17, 15551–15559. https:
//doi.org/10.1609/aaai.v35i17.17831

[15] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. 2012. Pro-
ton: Multitouch Gestures as Regular Expressions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Austin, Texas, USA) (CHI
’12). Association for Computing Machinery, New York, NY, USA, 2885–2894.
https://doi.org/10.1145/2207676.2208694

[16] J. Kopf, X. Rong, and J. Huang. 2021. Robust Consistent Video Depth Estimation.
, 1611-1621 pages. https://doi.org/10.1109/CVPR46437.2021.00166

[17] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(Montreal QC, Canada) (CHI ’18). Association for Computing Machinery, New
York, NY, USA, 1–17. https://doi.org/10.1145/3173574.3173610

[18] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping In-
teractive AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’21). Association for Computing Machinery, New York, NY, USA,
626–637. https://doi.org/10.1145/3472749.3474774

[19] Jingyuan Liu, Hongbo Fu, and Chiew-Lan Tai. 2020. PoseTween: Pose-Driven
Tween Animation. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’20). Association for

Computing Machinery, New York, NY, USA, 791–804. https://doi.org/10.1145/
3379337.3415822

[20] Google LLC. 2022. MediaPipe—mediapipe.dev. https://mediapipe.dev/. [Accessed
05-Apr-2023].

[21] Hao Lü and Yang Li. 2012. Gesture Coder: A Tool for Programming Multi-Touch
Gestures by Demonstration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for
Computing Machinery, New York, NY, USA, 2875–2884. https://doi.org/10.1145/
2207676.2208693

[22] Hao Lü and Yang Li. 2013. Gesture Studio: Authoring Multi-Touch Interactions
through Demonstration and Declaration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Paris, France) (CHI ’13). Association for
Computing Machinery, New York, NY, USA, 257–266. https://doi.org/10.1145/
2470654.2470690

[23] Richard G. McDaniel and Brad A. Myers. 1999. Getting More out of Programming-
by-Demonstration. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI ’99). Association for
Computing Machinery, New York, NY, USA, 442–449. https://doi.org/10.1145/
302979.303127

[24] George B. Mo, John J Dudley, and Per Ola Kristensson. 2021. Gesture Knitter:
A Hand Gesture Design Tool for Head-Mounted Mixed Reality Applications. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 291, 13 pages. https://doi.org/10.1145/3411764.3445766

[25] Kyzyl Monteiro, Ritik Vatsal, Neil Chulpongsatorn, Aman Parnami, and Ryo
Suzuki. 2023. Teachable Reality: Prototyping Tangible Augmented Reality with
Everyday Objects by Leveraging Interactive Machine Teaching. , Article 459
(2023), 15 pages. https://doi.org/10.1145/3544548.3581449

[26] Brad A. Myers, Richard McDaniel, and David Wolber. 2000. Programming by
Example: Intelligence in Demonstrational Interfaces. Commun. ACM 43, 3 (mar
2000), 82–89. https://doi.org/10.1145/330534.330545

[27] NIKE OLYMPICS. 2022. NIKE OLYMPICS. https://www.behance.net/gallery/
73353531/NIKE-OLYMPICS. [Accessed 05-Apr-2023].

[28] Randy Pausch, Tommy Burnette, AC Capeheart, Matthew Conway, Dennis Cos-
grove, Rob DeLine, Jim Durbin, Rich Gossweiler, Shuichi Koga, and Jeff White.
1995. Alice: Rapid prototyping system for virtual reality. IEEE Computer Graphics
and Applications 15, 3 (1995), 8–11. https://doi.org/10.1109/38.376600

[29] petricoregames. 2023. Pose Dancer. https://lenslist.co/pose-dancer/. [Accessed
05-Apr-2023].

[30] Printio.ru Lab Project. 2023. Fabric.js Javascript Canvas Library. http://fabricjs.
com/. [Accessed 05-Apr-2023].

[31] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
Body-Driven Graphics for Augmented Video Performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland
Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300852

[32] Yeongho Seol, Carol O’Sullivan, and Jehee Lee. 2013. Creature Features: Online
Motion Puppetry for Non-Human Characters. In Proceedings of the 12th ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Anaheim, California)
(SCA ’13). Association for Computing Machinery, New York, NY, USA, 213–221.
https://doi.org/10.1145/2485895.2485903

[33] ShaderPlayStudios. 2014. ShaderPlay.com. https://www.shaderplay.com/. [Ac-
cessed 04-Apr-2023].

[34] Jennifer J. Sun, Jiaping Zhao, Liang-Chieh Chen, Florian Schroff, Hartwig Adam,
and Ting Liu. 2020. View-Invariant Probabilistic Embedding for Human Pose. In
Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part V (Glasgow, United Kingdom). Springer-Verlag,
Berlin, Heidelberg, 53–70. https://doi.org/10.1007/978-3-030-58558-7_4

[35] William Robert Sutherland. 1966. The on-line graphical specification of computer
procedures. Ph. D. Dissertation. Massachusetts Institute of Technology.

[36] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. RealitySketch: Embedding Responsive Graphics and
Visualizations in AR with Dynamic Sketching. In Adjunct Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’20 Adjunct). Association for Computing Machinery, New York, NY,
USA, 135–138. https://doi.org/10.1145/3379350.3416155

[37] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand Interactive
Augmented Reality Applications. In The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association for
Computing Machinery, New York, NY, USA, 552–567. https://doi.org/10.1145/
3472749.3474769

[38] Lei Zhang and Steve Oney. 2020. FlowMatic: An Immersive Authoring Tool for
Creating Interactive Scenes in Virtual Reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology (Virtual Event, USA)
(UIST ’20). Association for Computing Machinery, New York, NY, USA, 342–353.
https://doi.org/10.1145/3379337.3415824

https://www.adobe.com/products/premiere.html
https://www.tensorflow.org/
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/substance3d-modeler.html
https://www.adobe.com/products/aftereffects.html
https://github.com/jagenjo/litegraph.js?files=1
https://doi.org/10.1145/2501988.2502045
https://doi.org/10.1145/2501988.2502045
https://doi.org/10.1145/2380116.2380171
https://animejs.com/
https://www.unrealengine.com/
https://doi.org/10.1109/CVPR.2017.495
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3491102.3517741
https://doi.org/10.1609/aaai.v35i17.17831
https://doi.org/10.1609/aaai.v35i17.17831
https://doi.org/10.1145/2207676.2208694
https://doi.org/10.1109/CVPR46437.2021.00166
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3472749.3474774
https://doi.org/10.1145/3379337.3415822
https://doi.org/10.1145/3379337.3415822
https://mediapipe.dev/
https://doi.org/10.1145/2207676.2208693
https://doi.org/10.1145/2207676.2208693
https://doi.org/10.1145/2470654.2470690
https://doi.org/10.1145/2470654.2470690
https://doi.org/10.1145/302979.303127
https://doi.org/10.1145/302979.303127
https://doi.org/10.1145/3411764.3445766
https://doi.org/10.1145/3544548.3581449
https://doi.org/10.1145/330534.330545
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://www.behance.net/gallery/73353531/NIKE-OLYMPICS
https://doi.org/10.1109/38.376600
https://lenslist.co/pose-dancer/
http://fabricjs.com/
http://fabricjs.com/
https://doi.org/10.1145/3290605.3300852
https://doi.org/10.1145/2485895.2485903
https://www.shaderplay.com/
https://doi.org/10.1007/978-3-030-58558-7_4
https://doi.org/10.1145/3379350.3416155
https://doi.org/10.1145/3472749.3474769
https://doi.org/10.1145/3472749.3474769
https://doi.org/10.1145/3379337.3415824


UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

A APPENDIX
Table 1 shows all nodes in PoseVEC. We also identify “video-linked”
node, source node, and sink node in the table.



PoseVEC: Authoring Adaptive Pose-aware Effects using Visual Programming and Demonstrations UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA

Node Type Subcategory Node Name Description source video-linked sink

Recognizer Pose Recognizer

It takes the current pose from
the video canvas as key pose;
When online tracking is
enabled, it constantly
compares the key pose
with poses from
the video canvas, and shows
a similarity score. It outputs a
true signal when the similarity
the score is below a
user-defined value.

X X

Logic node

Single Pose Logic

Constant boolean

It contains a toggle that outputs
true (on) when the toggle is
switched on, and false (off)
when the toggle is switched off.

Trigger

It outputs a single true value
when the input value changes
from false to true. It acts as
a switch that is triggered by
a change in the input value.

Reverse logic It outputs the opposite value
of its input.

Turn on once
Special version of trigger node,
only activate once during
online tracking mode

Dual Pose Logic
Or

It outputs true if any of the input
is true. Users could chain
multiple pose recognizer nodes
together to create a more robust
recognizer for a certain pose.

Sequence It outputs true only if both inputs
had turned true sequentially.

During

It is useful for rendering
animations that should only
appear within a time range.
It outputs true while the first
input is true before the
second input turns true.

Data node

Joint Information

Joint indices It outputs selected joint indices. X X
Joint location It outputs selected joint location. X X
Joint angle It outputs selected joint angle. X X
Joint distance It outputs selected joint distance. X X

Pose Information Current pose embedding It outputs embedding vectors of
poses from video canvas. X

Target pose embedding
It outputs embedding vectors of
pose from user-defined
pose recognizer.

X

Variable
Constant number It outputs a constant number. X

Numeric variable

It outputs a number variable.
Users must specify if they want
to update this variable during
the online tracking stage.
If they do, users must specify
the transform node ID, which is
the execution point after which
the variable will be updated.

X

Vector variable
Same as above. Instead of
outputting number variable,
it outputs vector variable.

X

Table 1



UIST ’23, October 29–November 01, 2023, San Francisco, CA, USA Zhang et al.

Node Type Subcategory Node Name Description source video-inked sink

Transform node

Basic Math

Basic math +,-,*,/ operations
Vector math +,-, L2 distance operations
Vector scalar *,/ operations
Convert to [0,1] normalization

Comparison Compare node

Compare two numeric values
using a user-defined comparator
such as greater than
or equal to (>=)
and less than or equal to (<=).

Location comparison

Compare two vector variable
A and B using a user-defined
comparator. For example,
outputs true if A is on
the left of B.

Other Function [0,1]To text

Convert input value to text
based on its range.
For example, user can define
if x < 0.3, output ’bad’;
if x >= 0.3, output ’excellent’.

Elapse time
Record and output theamount
of time that has passed when
the input is true.

Render node

Basic

Place at animation

It renders the appearance
animation of a group of
graphical objects at
a specific location.

X X

Chang opacity animation It controls the opacity of a group
of graphical objects. X X

Move To animation
It moves a group of
graphical objects from
one place to another.

X X

Change color animation It changes color of
a group of graphical objects. X X

Special Render

Joint Angle Annotation
It displays the angle of a joint as
text and highlights it using
two lines and an arc.

X

Joint Distance Annotation
It displays the distance between
two joint as text and highlights
the joints by a line.

X

Single Text Render
It accept a number, vector, or text
as input and display the content
using a text object.

X

Gif Render Node

It renders a GIF animation.
It contains properties such as
animation timeline, scale, and placement,
which can be modified by other nodes.

X


	Abstract
	1 Introduction
	2 Related Work
	2.1 Pose Effects Applications and Authoring
	2.2 Visual Programming for Interactive Animations
	2.3 Integrating Visual Programming with Programming by Demonstration 

	3 System Overview
	4 System Design
	4.1 Programming a Pose Effect
	4.2 Node Types
	4.3 Implementation Details

	5 User Evaluation
	5.1 Participants
	5.2 Procedure
	5.3 Results and Discussion
	5.4 Areas for Improvement

	6 Replicated Example Study
	6.1 YouMove's Yoga Tutorial
	6.2 PoseTween's Ball Dribbling
	6.3 ``Just Do It'' Kinetic Typography 

	7 Discussion
	7.1 Applications Beyond Social Media Videos
	7.2 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References
	A Appendix

