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Fig. 1. Four tasks of restaurant service training are shown on the left. These tasks sim-
ulate common incidents a restaurant server faces at work. Given the trainee’s perfor-
mance, our approach adaptively generates training sessions. A trainee receives training
in the interactive virtual restaurant as shown on the right. In this simulated training
environment, the trainee can walk freely, interact with virtual customers, and take re-
quests from tables like working in a real restaurant.

Abstract. With advances in consumer-grade virtual reality (VR) de-
vices, VR training gains unprecedented attention in research and indus-
tries. Although the nature of VR training encourages trainees to ac-
tively learn through exploring and gathering information in a simulated
virtual environment, designing effective virtual training environments is
non-trivial. We propose an adaptive approach that guides trainees to de-
velop psychomotor skills in a simulated virtual environment. As a show-
case, we demonstrate our novel approach for restaurant service using a
game-based VR application. By incorporating the trainee’s performance
and learning progress into optimization objectives, our approach uses
mixed integer programming (MIP) to generate VR training sessions it-
eratively. Through collecting the trainee’s performance in VR training,
our approach adapts the VR training sessions by considering the trainee’s
strengths and weaknesses, guiding the trainee to improve over training
sessions. We validated our approach through two experimental studies.
In the first study, we compared our approach with a random training task
assignment approach and a performance-only MIP approach through
performing simulated restaurant service training. In the second study,
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we compared our approach with the random assignment approach by
evaluating trainees’ skill developments in restaurant services. The re-
sults show that our skill-driven adaptive training approach outperforms
the random assignment approach.

Keywords: game design, adaptive training, virtual reality, optimization

1 Introduction

With advances in consumer-grade virtual reality (VR) devices, many companies
start to employ VR as a supplement to their workplace training. For example,
Walmart uses VR to simulate common and uncommon scenarios that could hap-
pen during Black Friday and prepare their employees for all possible upcoming
challenges [23]. Similarly, United Rentals, the world’s largest equipment rental
company, created virtual construction sites to engage their employees in learning
customer service skills and raising safety and site awareness [34]. Both examples
demonstrate that users can gain practical experience through interacting with
and working in a simulated environment.

Compared to traditional training methods (e.g., lecture-based training), VR
training appears to have many advantages. It is accessible from anywhere, config-
urable to anyone, and most importantly, provides an active learning environment
for trainees to involve in gathering information, thinking, and problem solving
[4, 36]. However, designing VR training is not trivial because active learning does
not simultaneously happen in the virtual environment, it requires a delicate de-
sign of teaching methods that are constantly adjusted based on the learning
progress of a trainee. Such monitoring of trainee progress can help prevent the
learning system from assigning a task too difficult too soon, which may discour-
age the trainee[22, 26]. However, monitoring the progress of individual trainees
and manually adjusting difficulty is not ideal as VR training is often applied to
a large number of new employees with different skill levels in a company.

This highlights the necessity for adaptive learning, which employs compu-
tational techniques to customize learning materials and training based on indi-
viduals’ needs and performance. [14]. Recent research in adaptive learning has
focused on musical tasks [38], machine tasks [11], and academic skills [33] to
improve individuals learning efficiency. However, there is a dearth of research to
enable psychomotor learning developments. Psychomotor learning refers to the
learning process of a person in learning component skills (e.g. how to interact
with customers, how to place orders), then compiling these individual psychomo-
tor skills together and automatizing them with higher-level executive functioning
(e.g., to work in a restaurant) [7].

Acquiring psychomotor skills in some workplaces is challenging as trainees of-
ten have to learn in rapidly changing, intricate environments to gain proficiency,
such as performing surgery or flying an aircraft. While VR can simulate these
complex conditions, the training may not immediately enable active learning as
individuals have unique learning curves. To this end, we propose an adaptive
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learning approach focused on psychomotor skill development using restaurant
service training as a showcase. Our approach is driven by trainee performance
on psychomotor skills (e.g., performance in interacting with customers), which
are collectively measured and evaluated in an interactive and configurable sim-
ulated restaurant. Such an environment encourages trainees to actively gather
knowledge about restaurant service responsibility and participate in restaurant
service training. By adaptively adjusting training tasks and task difficulty, we
provide a full psychomotor learning development experience in an efficient way.

There are four key attributes in constructing personalized adaptive learning:
user profiles, competency-based progression, personal learning, and flexible learn-
ing environments [25]. Motivated by these design guidelines, we propose a skill-
driven adaptive training approach. We build user profiles through pre-evaluation
to understand the trainees’ skill sets. We evaluate the trainees’ progress at each
training session by measuring their performances during training. Our approach
uses an optimization-based algorithm to create the next training session, taking
into consideration the trainee’s performance records and their training experi-
ence (such as enjoyment). The algorithm balances conflicting training goals (such
as being easy but boring vs. being challenging but exhausting) and adapts to
each individual’s needs, resulting in the creation of a personalized training path
to develop their psychomotor skills. By using VR, we enable a flexible active
learning environment that supports adaptive adjustment of learning materials.
Furthermore, we chose a restaurant as our running example because its workflow
is familiar to most people, with a dynamic nature which demands multi-tasking
abilities, task priority assessment, and task management. Other workplace train-
ing programs and other VR game applications can be adapted into our approach
similarly. The main contributions of our work include:

– We present an optimization-based algorithm that considers a trainee’s perfor-
mance and eagerness to adaptively generate training sessions. This approach
can be applied to workflow training in general.

– We created an interactive virtual restaurant to simulate restaurant service
tasks. This simulated environment encodes many commmon scenarios a
restaurant server faces. It also enables trainees to speak and interact with
virtual customers. It is configurable and extensible for training staff to pre-
pare for possible challenges in a real restaurant.

– We conducted a user study to compare our adaptive training approach with
a baseline training approach. The results show that our adaptive training
approach is more effective and efficient.

2 Related Work

2.1 Virtual Reality-based Training

VR training is widely applied in different domains such as retail business [30],
workplaces and factories [3, 29], and vehicle control [20, 17], because of its repli-
cability and low cost. For high-risk occupations such as first responders and
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military and medical learners [27], VR training also provides a mistake-tolerant
training environment. We refer our readers to a review on VR training applica-
tions for more details [36].

Many current VR training research focuses on knowledge acquisition through
training. For example, Li et al. proposed an optimization-based approach for
synthesizing construction safety training scenarios, allowing trainees to explore
those training scenarios to identify potential hazards [19]. Similarly, Aati et al.
developed work zone inspection scenarios for training engineers to inspect the
quality of work zone sign placement. They believe this virtual simulator is a
safer, cheaper, and more effective way to train inspectors than a field visit [1].
Shao et al. proposed an interactive-learning approach to teach American sign
language. Their approach leveraged the third and first-person views for motion
demonstration and practice [28]. Moreover, virtual patients have been widely
used for testing clinical examination interview skills in the medical field [18,
13]. For example, Tavassoli et al. presented a virtual training platform named
JAYLA to teach medical students about symptoms and severity levels of Autism
Spectrum Disorder in young children. Through encoding verbal and nonverbal
behaviors associated with age-appropriate autism into virtual patients, JAYLA
provided a new way to enhance professional training for early detection of autism
in young children [31]. Another common use of virtual patients is for training
clinicians to acquire social skills needed for clinician-patient interactions. Yao
et al. trained a classifier to identify empathy levels of a clinician’s responses
from their interactions with virtual patients and to provide feedback based on
evaluation results [37].

Since VR simulation can provide a blame-free environment, trial and error
in VR training provides a powerful learning mechanism, especially for high-risk
task training. For example, the Brazilian Navy developed a VR simulator for
training landing signalman, who was responsible for visual signaling to the pilot
and ensuring general safety conditions of the flight deck area [6]. Since this task
is often performed under stressful conditions, VR simulation training can help
relieve the burden of making mistakes. Crisis management training, another ex-
ample that uses VR as a learning tool, has been shown to be efficient in VR. By
training through a crisis in a subway station in VR, Conges et al. believed that
they could prepare practitioners for real-life crises in cities [5]. Moreover, since
VR training provides an accessible and scalable manner of training, it can help
manufacturing industry to train inexperienced workers to fill workforce short-
ages. For example, Ipsita et al. present a VR-based welding training simulator
that can be easily adapted and distributed at different scales [12]. Those works
either focus on educating trainees through immersive simulation or on the inter-
actions between virtual agents and trainees to improve interpersonal skills. In
contrast, we propose an adaptive training approach integrated with virtual re-
ality. Through tracking trainee performances during VR training, our approach
adaptively modifies training tasks and adjusts the difficulty level of the next
training session to enhance training efficiency.
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2.2 Psychomotor Learning

Skill development generally involves complex muscular movement and cognitive
control, which requires a substantial amount of practices. Psychomotor Learning
refers to the relationship between cognitive functions and physical movement.
Playing a sport, driving a car, or dancing are examples of psychomotor learning.
Fitts and Posner proposed a three-stage model for psychomotor skills develop-
ment, comprising the cognitive stage, the associative stage, and the autonomic
stage. It describes the learning process of a person in accomplishing the task
goals. The process starts from gaining theoretical information and attempting
to take actions, then gradually becoming fluent in individual actions with slow
transitions between these actions, and finally becoming capable of performing
skills seamlessly. They also pointed out an important feature of the three-stage
development model: a rapid progression usually happens in the cognitive stage
and a slow progression usually takes place towards the autonomic stage [15, 7].
It implied that trainees must take sufficient practice to achieve full psychomotor
skill developments. Adaptive training appeals to fast-paced and high-demand
work environments for training workforces to be proficient in multiple tasks in
a short amount of time.

Merriënboer et al. defined complex learning as the achievement of multiple
performance objectives and emphasized the importance of learning how to coor-
dinate and integrate separate skills to achieve goals [32]. It suggests that when
designing training for a complex learning environment (e.g., a workplace), one
should not evaluate skills separately. They should also consider proficiency in
completing tasks using skills in a coordinated and integrated fashion. In our ap-
proach we consider psychomotor skill development in our trainees; in particular,
our trainees first obtain knowledge of each task (i.e. workflow of each task) and
gradually progress through three stages of psychomotor learning. Since our ap-
proach uses mixed integer programming to synthesize training tasks targeted at
addressing participants’ weaknesses, our approach gradually increases the com-
plexity of the multitasking level. To help trainees perform, we evaluate their
performance from a complex learning perspective, that is, we evaluate not only
the performance of completing each task, but also the ability to coordinate with
other tasks through a multitasking lens.

2.3 Adaptive Training and Interfaces

Although research has shown that adding an extra layer of reality can bring
effectiveness to training, it is not easy or intuitive for VR/AR creators to encode
learning opportunities into AR/VR [2]. On one hand, many research focuses on
creating personalized digital space and improving the usability of mixed reality
interfaces. For instance, Lindlbauer et al. proposed a context-aware optimization-
based approach to automatically control mixed reality interfaces [21]. In particu-
lar, this automated process leverages users’ cognitive load and information about
their tasks and environments to support MR interface adaptation. Inspired by
this work, we track a trainee’s performance during training and leverage this
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Fig. 2. An overview of our approach. Our approach obtains the trainee’s performance
metrics from a VR training session, including the number of hints asked, the number of
mistakes made, the walking path, and the order of tasks performed. Then it leverages
such performance metrics to adaptively generate the next training session through an
optimization, aiming to help the trainee improve efficiently. In particular, it adjusts
the difficulty levels and appearances of different tasks to keep the trainee engaged with
the training.

information to adaptively generate the next training session for the trainee to
practice.

On the other hand, a few research investigates different training strategies
to improve training performance. For instance, part-task training is often used
for training sequential components of a complex task, and increasing training
difficulty is effective as long as the increased difficulty is adaptive [7, 35]. Yuksel
et al. used an increasing-difficulty strategy to adaptively teach users to learn to
play the piano with Bach’s music pieces. They measured the learners’ cognitive
workload in real-time to increase the difficulty level of the music learning tasks
[38]. Other research aims to combine multiple instructional strategies to achieve
better training results. Huang et al. proposed a system that used a combination
of macro and micros-approach for adaptation. They collected learner historical
records and real-time input to adaptively teach users to master machine tasks
[11]. The previous works focused on evaluating the effectiveness of different train-
ing strategies in music and machinery tasks. Inspired by these works, we devise
an adaptive training approach to synthesize psychomotor skill training sessions
for virtual reality-based training.

3 Overview

To illustrate our approach, we create a virtual restaurant to simulate training in
a workplace. This virtual restaurant enables trainees to speak, walk and inter-
act with virtual objects/agents in the environment. We describe the details of
the virtual environment, object manipulation, and restaurant tasks involved in
Sect. 4. By using this virtual restaurant as an illustrative example, we explain
how our approach can generate tasks to train people adaptively with respect to
skill development. Fig. 2 shows an overview of our approach.

Since our approach focuses on psychomotor skill development and multi-
tasking ability development, we formulate a trainee’s learning experience and
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training record into design objectives (e.g., workflow of a task, number of hints
used, mistakes made) as well as a set of constraints (e.g., multitasking difficulty
level). We use mixed integer programming (MIP) to solve this multi-objectives
optimization problem (Sect. 4.2) while satisfying the constraints. Given trainee
performance from the previous training session, our approach assigns different
tasks and adjusts their difficulty levels for the next training session, while grad-
ually increasing the multitasking difficulty.

Lastly, we validate our approach through two experiments (see Sect. 5). In
the first study, we compared our approach with a random assignment approach
and a Performance-Only MIP approach through performing simulated training.
The goal of this simulation experiment is to see whether our approach can train
trainees to progress more efficiently than baseline approaches given the same
trainee with a fixed learning ability. In the second study, we compare our ap-
proach with the random assignment approach by training trainees to work in
a virtual restaurant. The goal of the second user study is to evaluate efficiency
in restaurant skill development and multitask strategy skill development under
two different training conditions.

4 Problem Formulation

4.1 Virtual Environment and Interaction

Restaurant Service Tasks. A good restaurant server

Fig. 3. A snapshot of
the “check out” task. The
trainee was about to re-
turn the credit card to the
customer, who was angry
as it was taking too long.

must excel at communication, front-of-house tasks
(e.g., cleaning up tables), time management, and also
multitasking. Thus, a restaurant service training not
only considers individual skill development but also
the ability to combine and use skills in an optimal
manner. For our virtual restaurant, we design eight
tasks to represent major customer requests restaurant
staffs need to handle in their daily work routine. We
included regular tasks such as taking orders, deliv-
ering food and checkout; and two incident tasks that
described some common accidents in a restaurant (e.g.
drink dropped, food overcooked). Refer to Table 1 for
description of four major tasks.

Each task has a difficulty level and a property that reveals the characteristic
of this task. For example, the “check out” task is time sensitive because this task
requires trainees to return the customer’s credit card within a time limit, other-
wise the customer will be angry at him (see purple agent in Fig. 3). Each task
also is associated with a property value, which is used to set up constraints for
multitasking level difficulty training (see Sect. 4.3). Please refer to the supple-
mentary material for more details of each task setting. With these constraints,
trainees can practice their multitasking ability in training sessions generated by
our optimizer.
Virtual Environment. As shown in Fig. 4 (left), our 6m X 6m simulated
virtual restaurant contains four tables, one food counter, and one point-of-sale
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Fig. 4. Left: the virtual restaurant’s layout. Right: the tools for performing tasks in
virtual reality. Trainees used the left-hand controller to switch between tools for com-
pleting different tasks. They also used the interaction panel to interact with virtual
customers and the hint panel to ask about the workflow of a task.

Task Name Description Diff.
level

Property
(value) Walking Path

1
Ready
To
Order

Interact with customers
and ask what they want
to order

3 Talk-centric(1) Table->POS

2 Want
Food

Grab food from kitchen
and deliver food to each
customers;Grab dirty plates.

3 Service-centric(10) Table->Kitchen
->Table

3 Reqeust
Recipt

Print out receipt
and deliver it to
the table

3 Time-sensitive(100) Table->POS
->Table

4 Checkout Process payment
for the customers 3 Time-sensitive(100) Table->POS

->Table
Table 1. The details of different tasks.

(POS) machine. A trainee can walk freely in this simulated environment. At the
beginning of the simulation, the trainee will walk to a table first, interact with
customers to get a request, then walk to the POS machine for placing an order,
or go to the food counter to get items for the customers. After that, she will
go back to the table to deliver the items for completion. During the simulation,
each table will have at most one request.
User Interaction and Speech. The trainee uses the left-hand controller for
switching tools between a food tray, a clean up tool, and an interaction panel.
This interaction panel is used to interact with a customer. See Fig. 4 (right).
By pressing the speak button, our program can record the trainee’s speech. We
use natural language processing from the Wit model 3 for speech recognition in
our simulation. The model first extracts the trainee’s intention from their speech,
then it will check if this trainee’s intention belongs to one of the three predefined
categories: greeting response, ask for repeat response, and task-specific responses.

3 https://wit.ai/
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If not, it will ask the trainee to speak again. Once the intention is recognized
and matches with the current task’s desired response, the customer will respond
or react. See the supplementary material for responses of different categories.
We also include a hint panel underneath the interaction panel. If the trainee is
uncertain about the workflow of a task or a message to respond to, he can press
this hint button to get the next step information.

4.2 Optimization Approach

Our approach aims to assign tasks with suitable difficulty for each training
session while satisfying some training constraints (e.g., multitasking level con-
straint). We propose an objective with the following sub-objectives: repeated
mistake avoidance (M), familiarity with the workflow (W), tolerance of repe-
tition (R) and eagerness (E). M measures the number of mistakes made by a
trainee. W measures the number of hints the trainee asked for, which reflects the
trainee’s familiarity with the current workflow. R measures the number of times
a task is repeated in a row. E estimates the amount of eagerness with which the
trainee is willing to play this task. Our approach seeks to maximize the overall
objective function comprising the sub-objectives. For all tasks t ∈ T = {1, ...n},
our approach solves for the following:

max

n∑
t

m∑
d

Xt,dYt,d(λMMt,d + λWWt,d + λRRt,d + λEEt,d), (1)

where Xt,d ∈ {0, 1} is a binary decision variable capturing whether task t with
difficulty d will be used in a training session. Yt,d denotes whether task t has
difficulty d. All sub-objective functions are calculated for the current task t with
difficulty d, but for simplicity we drop the subscript later on. We empirically
set the weight of each sub-objective function as 0.3. Table 2 summarizes the
parameters and variables in our formulation.
Repeated Mistake Avoidance (M). Mistakes are a valuable indicator in
designing a training session. This objective aims to let the trainee practice more
if he exhibits repeated mistakes. It consists of two parts, persistent mistake and
usability of task difficulty:

E = δMistPerUMistPer
t,d . (2)

First, we want to know on what percentage the trainee persistently made
mistakes when doing this task, denoted by δMistPer and formulated as:

δMistPer =
1

eλMistPer(K−nt/pt)
, (3)

where λMistPer is set as 2. Presumably, if a task has a large persistent mistake
rate, then the trainee needs to work on this task more frequently. K is the largest
persistent mistake rate of all tasks from the trainee’s performance record. We
use this term to evaluate the importance of this task in helping correct mistakes.



10 Y. Zhang et al.

Parameter Description Variable Description
mt number of mistakes made

in a task t
T = {t1, . . . tn} all tasks

nt number of times task t has
mistakes in the training
sessions experienced so far

Xt,d binary variable capturing
whether task t with dif-
ficulty d showed up in
training session

ht number of hints asked in
task t

Yt,d binary variable indicating
whether task t has diffi-
culty d

pt number of times task t
was played

λX weight of a sub-objective
function

Rt number of times of repeat-
ing task t in a row

Pt task t’s property value
S total number of training

sessions
Table 2. Descriptions of input parameters and variables in our formulation.

Secondly, we define the usability of this task difficulty, UMistPer
t,d , in helping

to correct persistent mistakes:

UMistPer
t,d =

(df − dtarget)
2

0.5σ2
, (4)

where σ is empirically set as 0.8. df is the usability of a task with difficulty d which
is defined in Table 1. dtarget denotes the desired task usability a trainee should
practice with respect to the persistent mistake rate of this task. In correcting
mistake behaviors, it will be better if we start with an easy level task and then
gradually increase the difficulty. Therefore, we set dtarget as follows:

dtarget =


1 if nt/pt ≥ 0.8

0.6 if 0.5 ≤ nt/pt < 0.8
0.3 otherwise.

(5)

Familiarity with Workflow (W). This objective evaluates whether the
trainee understands and remembers the workflow of a particular task. As sug-
gested by [26], we need to avoid fast progression to a difficult task when the
trainee is still uncertain about the basic workflow. Thus, the usefulness of a
particular task difficulty, UTaskDiff, is defined as follows:

UTaskDiff =


1 if d = 1

0.6 if d = 2

0.3 if d = 3.

(6)

In this way, we penalize the assignment of a difficult task to a trainee when
he is not familiar with the task workflow.

Secondly, we want to know how much a trainee is familiar with the workflow
of a task t, denoted as δFamiliarity, by measuring the number of hints asked in
executing that task and normalizing into [0, 1]:
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δFamiliarity =
ht

hmax
, (7)

where hmax denotes the maximum number of hints the trainee asked in doing a
task. We empirically set it to be 5. Overall, we have:

W = δFamiliarityUTaskDiff. (8)

Tolerance with Repetition (R). Repetition is a basic but powerful learn-
ing strategy used for training [24]. On one hand, it is desirable to let trainees
practice a task repeatedly to strengthen their skills. On the other hand, trainees
may lose interest in a certain task after it is repeated too many times. Thus,
it is desirable to balance repetition and a trainee’s interests during training. In
game level design, it is common for game designers to vary game settings to
avoid monotonous levels [8, 10]. Inspired by that, we consider the tolerance with
repetition and the eagerness to learn to introduce variety to the training.

We include the tolerance with repetition term to evaluate how much a trainee
can tolerate training with the same task repeated in a row. It is defined as follows:

R = γRt − σtoleranceRt, (9)

where Rt is the number of times task t is repeated in a row. γ and σtolerance

determine the amount of decrease in tolerance; they are empirically set as 0.2.
Eagerness to Learn (E). Other than repetition, it is also important to review
tasks to reinforce their learning. By introducing occasionally played tasks, we
can let the trainee review the tasks while keeping their interests in training.
Specifically, we define this term to evaluate how much a trainee is willing to play
a task. This term is determined by the appearance rate of a task for the entire
training. Our goal is to avoid assigning a frequently appearing task to training
sessions. The term is formulated as follows:

E =

{
0 if δappear < 0.4

Γ δappear − 1 otherwise,
(10)

where δappear is calculated by the number of times this task is played over the
number of training sessions experienced so far. Γ controls the speed of decay
and is empirically set as 0.2.

4.3 Constraints

We introduce a set of constraints to avoid duplicated tasks, limit training session
length, and, most importantly, to perform multitask strategy training practice.
Task Duplicates. We avoid task duplicates by enforcing:

Ct =
∑
d

Xt,d = 1,∀t ∈ {1, ...n}, (11)

where Ct denotes the number of tasks appearing in a training session.
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Training Session Length. This constraint ensures that each training session
has a certain length:

1 ≤
∑
t

∑
d

Xt,d ≤ δLength,∀t ∈ {1, ...n},∀d ∈ {1...m}. (12)

For our running example, we set δLength to 4, meaning that at most four
tasks appear in a training session.
Multitasking Level Constraint. In addition to skill level training, we define
this constraint to help trainees improve their multitasking performance. When
multitasking strategy training is enabled, our approach gradually increases the
difficulty of multitasking training based on the trainee’s current performance.
The difficulty of multitasking level is set as easy, medium, or hard, corresponding
to working on two, three, or four tasks at the same time. Presumably, since
this constraint will affect the number of tasks assigned in a training session,
we include this constraint only when the trainee is familiar with the workflow
of all tasks. However, in our user study, we include this constraint in the first
training session due to the time limit of our user study. Moreover, our optimizer
increases the multitasking difficulty level if the multitasking strategy training
score (defined in 6.1) obtained from the trainee reaches the maximum score.

To ensure that each multitasking difficulty level is meaningful, our optimizer
selects tasks of different properties from the task list for combination. As shown
in Table 1, we associate each task with a property and a property value (e.g.,
task 7’s property is “walk-centric” with property value Qt = 1, 000). In this way,
some judgments are needed for the trainee before deciding to serve a table:∑

t

QtCt = δgoal, (13)

where δgoal is from a set of all possible combinations of task property values of
a certain difficulty level. For example, if the multitasking difficulty is specified
as medium, then the set of all possible combinations of tasks of three, each with
different task properties, is {111, 1011, 1110, 1101}. Then we create a constraint
for each δgoal in the set. Our optimizer will generate a solution that satisfies any
one of these multitasking level constraints.

4.4 Implementation

We implemented our VR training scenarios using C# and the Unity game engine.
We use the Gurobi solver to solve the mixed integer programming problem4.
It took less than one second to generate a solution that satisfied the set of
constraints with optimized objective values. This solution contains a set of tasks,
each with a specific difficulty level. This set of tasks will be used for the current
training session. Based on the trainee’s performance tracked in the training,
our approach uses the MIP optimizer to generate the set of tasks for the next
4 https://www.gurobi.com
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MIP Performance Random
MIP vs.
Perform
-ance

MIP vs.
Random

Perform
-ance. vs.
Random

Mean (SD) 44.1 (6.6) 49.6 (7.8) 34.9 (5.9) p-value <0.001 <0.001 <0.001

Table 3. Descriptive statistics for the simulation experiment. We generated 20 hypo-
thetical trainees to compare the training performance of three different conditions. A
performance record is calculated as the sum of the number of hints asked and the num-
ber of mistakes made in all tasks. Then we obtain trainees’ improvement records by
subtracting trainees’ final performance records from their initial performance records.
The left table shows the average improvement record with the standard deviations in
parentheses for the MIP approach, the Performance-Only approach (Performance), and
the Random approach. The right table shows the p-values of t-tests for each pair of
approaches.

training session. For delivering the synthesized VR training experiences, we used
the Oculus Quest2 virtual reality headset.

5 Experiments

5.1 Simulation Experiment

We conducted a simulation experiment to determine whether our approach can
train people more efficiently compared to other approaches given the same
trainee as input. In this experiment, we focus on the development of individ-
ual psychomotor skill components. We compared our approach (MIP) with a
random assignment approach (Random) and a performance-only MIP approach
(Performance). In the random assignment approach, the optimizer randomly as-
signed two to four tasks for each training session. In the Performance-Only MIP
approach, we only consider the repeated mistake and familiarity of workflow ob-
jectives. In general, trainees who received the Performance-Only MIP training
had the highest improvement for all tasks in all three conditions; trainees tak-
ing the MIP approach has better improvement than those taking the random
assignment training. The difference in improvement across the three approaches
was significant with p < 0.05 for all pairs (see Table 3). Please refer to the
supplementary material for more details about this simulation experiment.

5.2 Virtual Reality Training Experiment

We conducted user study experiments to measure the effectiveness of the per-
sonalized virtual training sessions synthesized by our approach. We compared
trainees’ performance under two conditions, adaptive training condition (AT)
and random assignment condition (Random). In the adaptive training condition,
we first updated trainee performance for each task, then used our optimizer to
generate tasks for the next training. In the random assignment condition, we
randomly assigned two to four tasks to participants.
Participants. We recruited 26 participants to simulate working in a restaurant.
The participants were university students aged 19 to 37, with about 65% of males
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and 35% females. They were randomly and equally assigned to one of the two
conditions. The user study was IRB-approved. We first gave a warm-up session
for the participants to get familiar with the virtual environment and the controls.
Then we give a pre-evaluation for the participants to evaluate their background
knowledge of serving in a restaurant.

The goal of the second study is not only to evaluate mastery of individ-
ual restaurant tasks but also trainees’ ability to apply multitasking strategies.
Therefore, we teach the participants how to combine tasks in an optimal way at
the beginning of the training.
Procedure. The participants practiced the multitasking skill for five training
iterations. During training, they could request hints if they were uncertain about
the workflow of the task either by pressing the hint buttons or talking to the
instructor directly. We recorded the number of hints they asked and the number
of mistakes they made during the training and also their multitasking perfor-
mance. There was a two-minute break after each training. During this break,
we told the participants about the mistakes they had made and reminded them
about the workflow and multitasking strategies for those unfamiliar tasks.

In the end, we gave the participants a post-evaluation that had the exact
same task as the pre-evaluation. Akin to the training, we asked them to combine
all the tasks using the skills they learned. We recorded their performance. Upon
training completion, we asked the participants to fill out a questionnaire. This
questionnaire includes their training experience in the simulated restaurant and
their enjoyment ratings.

6 Evaluation

6.1 User Evaluation

To help us evaluate the overall performance of our participants, we calculate
a final performance score, ffinal, for the pre-evaluation session and the post-
evaluation session, as follows:

ffinal = fstrategy − 0.1
∑
t

(ht +mt), (14)

where ht and mt are the number of hints and the number of mistakes made by
a participant, which we refer to as skill performance record. fstrategy evaluates a
participant’s ability of multitasking, ranging from 0 to 3.

The goal of training multitasking skills is to minimize the average waiting
time of customers as well as to improve restaurant server working efficiency.
Therefore, a well-trained restaurant server should take multiple tasks from tables
and combine workflow of some tasks (e.g., placing an order and printing a receipt
at the POS machine) in order to complete tasks in a single run. Since each task
has a different property, the order of taking these tasks is critical. A server
may want to serve a ready-to-order table first before a check-out table, so that
customers who want to check out do not need to wait for the server to help the



Mixed-Integer Programming for Adaptive VR Workflow Training 15

Pre-evaluation Post-evaluation Training
Improvement

Skill
Performance
record

AT 10.08(7.58) 1.23(0.86) 8.85(6.64)

Random 11.85(2.81) 3.77(7.03) 8.08(9.58)

p-value 0.06 0.01 0.50

Multitasking
strategy
training score
fstrategy

AT 0.31(0.40) 2.85(0.31) 2.54(0.60)

Random 0.31(0.23) 2.08(0.58) 1.37(0.53)

p-value 1 0.01 0.05

Final
performance
scores
ffinal

AT -0.70 (0.55) 2.72 (0.31) 3.42 (0.67)

Random -0.88 (0.33) 1.67 (0.68) 2.55 (0.57)

p-value 0.50 0.001 0.001

Table 4. Users’ overall performance records in completing the pre-evaluation and
post-evaluation sessions, and the overall training improvement for both conditions are
shown. Specifically, we show skill performance record (the average total number of
hints asked and the number of mistakes made), multitasking strategy training score,
and final performance score. For each score category, the first and second rows show the
means with the standard deviations in parentheses. The third row shows the p-values
of t-tests comparing the results of the two approaches. Note that a lower number in
the skill performance record indicates better performance while a higher number in the
other terms indicates greater participant performance. Compared to the random ap-
proach, the AT approach leads to a significantly higher performance score and training
improvement.

I enjoy it I like it I feel good
physically It’s a lot of fun I am not at

all frustrated
AT 6.5(0.8) 6.4(1.0) 6.5(0.8) 5.8(1.1) 5.8(1.3)
Random 6.1(1.3) 6.2(1.1) 5.8(1.3) 5.7(1.2) 5.2(1.7)

Table 5. The PACES ratings.

ready-to-order table first. Similarly, the order of completing tasks is important.
Since customers from a check-out table want to leave right after they receive
their credit card, it is important for the server to deliver the credit card to them
when he was back from the kitchen (or the POS station). Thus, we define these
three metrics to evaluate the ability of participants in handling multiple tasks.

Based on the current virtual restaurant and task settings, we can define
an optimal order of tasks a participant take at the beginning as follows: talk-
centric task → service-centric task → walk-centric task → time-sensitive task.
Similarly, the optimal order of tasks the participant completed is defined as:
talk-centric task → time-sensitive task → walk-centric task → service task.
Lastly, the participant’s optimal walking path is Table → POS → Kitchen →
Table. If the participant fails to follow the optimal order (or walking path), she
will receive zero on that metric.

Table 4 shows the descriptive statistics and t-test results. As we can see,
the average final performance score of the AT approach group is higher than
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that of the random assignment group. To investigate whether there is a sta-
tistically significant difference between the improvement made by the partici-
pants in the two groups, we performed two sample t-tests on each component
of final performance score (α = 0.05). As the results, there was no significant
difference in the final performance (F(24)=0.68, p>0.05) or any components of
final performance scores before training (skill performance record: F(24)=-1.98,
p=0.06; fstrategy: F(24)=0, p=1). However, there was a significant difference in
the final performance (F(24)=3.83, p<0.001) and so for each component after
training (skill performance: F(24)=-3.26, p<0.01; fstrategy: F(24)=2.95, p<0.01).
We also find significant differences in the overall training improvement (i.e. in-
crease in final performance score) between the random assignment and AT groups
(F(24)=2.84, p<0.01). Specifically, a significant difference was observed in the
multitasking strategy training scores(F(24) = 2.61, p<0.05) but not in skill per-
formance record. (F(24) = 0.69, p=0.50). Refer to the supplementary material
for additional analysis.

This result suggests that participants in both condition groups can master
their restaurant skills in five training sessions. However, since there were only
four restaurant tasks to learn in 90 minutes, the training might not have been
challenging enough for participants in both groups. Moreover, a significant differ-
ence was observed in the multitasking strategy training score, indicating that our
approach can be highly effective in helping trainees improve not only restaurant
service skills but also their ability to apply multitasking strategies.

6.2 Participant Feedback

Physical Activity Enjoyment Rating. We asked our participants to fill
out a physical activity enjoyment scale questionnaire (PACES) in both pre and
post-evaluation sessions. PACES is a quantitative measurement of the perceived
enjoyment level for a physical activity validated by Kendzierski and DeCarlo
[16]. We used the short version [9] which consists of five 7-point Likert scale
questions. Table 5 shows the results. Overall, the PACES percentage scores of
the AT approach are slightly higher than those of the random assignment group.
This suggests that the AT approach can lead to a similar level of enjoyment while
training people more effectively.

Although all participants had improved after training, not all participants be-
lieved that the training sessions assigned to them were carefully selected based
on their weakness. Participants from the AT group were more confident in be-
lieving that the tasks assigned to them were carefully picked (M=3.8, SD=1.1),
compared to those from the random assignment group (M=2.7, SD=1.1). A two-
sample t-test shows that there is a significant difference in this rating (f(24)=
2.8, p<0.01).
Example Participants’ Performance. To investigate further, we select one
participant (P7) from the random assignment group and one participant (P11)
from the AT group for comparison. Table 6 shows their pre-evaluation and post-
evaluation performances. As we can see, the participant (P7) from the random
assignment group got familiarized with task 1 and 7 and had made fewer mistakes
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Participant
(Condition)

# Hints + Mistakes for Task 1,4,7 Training
Session

Multi-Tasking Training Score
Pre-evaluation Post-evaluation Pre-evaluation Post-evaluation

P11(AT) 2,2,4 0,1,0

(T2,T7),
(T1,T4),
(T1,T2,T7),
(T2,T4,T7),
(T1,T2,T4)

0 3

P7(Random) 2,4,6 1,3,0

(T1,T2,T3,T4),
(T1,T2,T7),
(T1,T2,T7),
(T1,T2),
(T2,T4)

0 3

Table 6. Selected participants from the AT approach and the random assignment
approach. The multitasking training score has the most influence on the final training
score in performance. The participant from the random approach had a difficult time in
learning and applying multitasking skills because the multitasking difficulty assigned
to him was not adjusted based on his performance. In contrast, the participant from
the AT approach received gradually-increasing multitasking difficulty in training and
she received a higher multitasking training score.

(or asked fewer hints). However, he was not familiar with task 4 and performed
poorly in multitasking. This is likely because tasks assigned by the random
assignment approach did not target his weakness for training. Also, random
multitask level difficulties were given to the participant. This participant started
with a hard level of multitasking difficulty and practiced with an easy level of
multitasking difficulty towards the end. This posed extra challenges for this
participant to learn and master multitasking. He received 1 out of 3 for the
multitasking training score.

In contrast, the AT approach would target all of the participants’ weaknesss.
The participant (P11) from the AT group was not good at doing task 7 at the
beginning and repeatedly made mistakes for task 7. As a result, she was assigned
by our adaptive approach to do task 7 three times in the five training iterations.
On the other hand, our approach gradually increased the multitasking training
difficulty after she showed proficiency at the current multitasking difficulty level.
She got 3 out of 3 for the multitasking training score.

7 Discussion, Limitations and Future Work

Our work sheds light upon the novel research direction of adaptive game-based
training via virtual reality. Using our approach, trainees can develop psychomo-
tor skills in an efficient way. Driven by a trainee’s performance, our approach can
generate a suitable task list such that it targets the trainee’s weaknesses while
keeping the trainee engaged in game-based training. Moreover, other workplaces
that require extensive hands-on training prior to work can benefit from game-
based training. For instance, simulated medical skill training could be used in
conjunction with our approach to provide a personalized training approach that
meets individual needs and learning preferences [31, 37]. We demonstrate the
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hypothetical outcome of the Performance-Only approach if users want to have
a results-oriented learning experience. Also, users can activate focus mode us-
ing our approach such that only specific types of tasks will be displayed for for
training.

Additionally, many workplace training programs focus on developing employ-
ees’ social skills, such as effective communication, to help them establish and
maintain positive social relationships with others. In this paper, we only focus
on training verbal communication by identifying the intentions of each sentence.
Other nonverbal aspects such as gestures, eye contact, volume, and so forth are
also vital in delivering messages. Our approach can incorporate with other com-
munication skill training models [39] to evaluate users’ social skill development
and adaptively generate training sessions.
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