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Fig. 1. Given staff properties, a space, and work equipment as input, our approach automatically generates an optimized workspace and workplan.

Humans assume different production roles in a workspace. On one hand,
humans design workplans to complete tasks as efficiently as possible in
order to improve productivity. On the other hand, a nice workspace is
essential to facilitate teamwork. In this way, workspace design and workplan
design complement each other. Inspired by such observations, we propose
an automatic approach to jointly design a workspace and a workplan. Taking
staff properties, a space, and work equipment as input, our approach jointly
optimizes a workspace and a workplan, considering performance factors
such as time efficiency and congestion avoidance, as well as workload factors
such as walk effort, turn effort, and workload balances. To enable exploration
of design trade-offs, our approach generates a set of Pareto-optimal design
solutions with strengths on different objectives, which can be adopted for
different work scenarios. We apply our approach to synthesize workspaces
and workplans for different workplaces such as a fast food kitchen and a
supermarket. We also extend our approach to incorporate other common
work considerations such as dynamic work demands and accommodating
staff members with different physical capabilities. Evaluation experiments
with simulations validate the efficacy of our approach for synthesizing
effective workspaces and workplans.
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Fig. 2. McDonald brothers’ Speedee Service System featured in the film, The
Founder. On a playground, the staff improvised running a food production
pipeline for a fast food kitchen.

1 INTRODUCTION
In the film The Founder, the McDonald brothers called on their staff
to perform simulations on a playground. Figure 2 depicts this fun
experiment: the McDonald brothers envisaged what an optimal food
production pipeline for their fast food kitchen should look like and
asked their staff to improvise working in the pipeline. Through
multiple rounds of trials and errors, they devised the revolution-
ary “Speedee Service System,” which marked the dawn of fast food
restaurants. Our work is inspired by this interesting story. Given a
space, work equipment, and staff properties, would it be possible to
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jointly synthesize a workspace and a workplan to optimize work
performance and work experience?
The father of skyscrapers, Louis H. Sullivan, coined the phrase

“form follows function”, meaning that the shape of a building or
an object should relate to its intended function. This principle has
inspired research on shape modeling [Zhu et al. 2015] and layout
design [Fisher et al. 2015; Savva et al. 2016]. Motivated by this
principle, we propose a computational design approach to synthesize
forms (workspace and workplan) following the functional goals of
facilitating teamwork and enhancing overall work performance.
Figure 1 illustrates our approach.
Different from residential layout, the ultimate design goal for

functional layouts (e.g., workspace) is to support collaborative work.
Hence it is crucial for a layout design algorithm to consider human
work activities when synthesizing a workspace design, and also to
consider how humans can leverage the workspace to collaborate
and increase productivity. The arrangement of objects and staff
for a functional layout can be challenging since it involves both
layout design and logistics considerations. To this end, we formulate
their syntheses as an alternating optimization problem: Given an
initial workplan, our approach optimizes the layout of the work
equipment in the workspace to facilitate collaboration. Given the
workspace, our approach optimizes the staff workplan, e.g., their
roles and work schedules in the workspace. These two steps are
iterated to synthesize an optimized workspace and workplan.
Employee well-being is key to developing workplace resilience.

Our approach considers physical wellness of employees at work
such as physical endurance and workload balance. Other wellness
factors (e.g., work stress) and work considerations (e.g., staff require-
ments) can be incorporated into our approach in an extension. In
this case, our approach adapts the workspace and workplan to cope
with the goals. Leveraging the power of optimization and agent-
based simulations, our novel approach synthesizes a workspace
that is not only visually realistic, but also practical and functional,
together with a workplan that informs how humans could leverage
the synthesized workspace to produce.

In designing a workspace and a workplan, conflicting objectives
(e.g., increasing performance, reducing workload) are common that
designers often have to explore trade-offs. To enable design explo-
rations, our alternative optimization approach incorporates Pareto
Simulated Annealing (PSA) to generate and keep track of a set of
Pareto-optimal design solutions that excel at different objectives.
For example, a restaurant may adopt a synthesized design solution
that maximizes performance in a peak season, while using another
solution that emphasizes workload balance in an off-season. The
major contributions of our work include:

• Proposing a novel problem statement of jointly synthesizing
a workspace and a workplan to improve collaboration, work
performance, and work experience.

• Devising a computational design approach based on alternat-
ing optimization to synthesize workspaces and workplans for
a variety of common workplaces with practical work consid-
erations.

• Evaluating the efficacy of the synthesized workspaces and
workplans through simulations.

2 RELATED WORK

2.1 Computational Layout Design
Layout design is an important area in computer graphics. Researchers
have devised generative approaches for synthesizing city layouts
[Aliaga et al. 2008; Yang et al. 2013], street layouts [Chen et al. 2008;
Peng et al. 2016], architectural layouts [Bao et al. 2013; Wu et al.
2018], etc. We focus on discussing relevant indoor layout synthesis
works.

Indoor layout synthesis research has mostly focused on residen-
tial layouts. Merrell et al. [2010] used Bayesian networks to encode
architectural programs based on residential building layouts gener-
ated through an optimization approach. Generative approaches are
also devised to synthesize furniture layouts. Yu et al. [2011] and Mer-
rell et al. [2011] optimized furniture arrangement by considering er-
gonomic factors and interior design guidelines. Recently, researchers
leveraged the power of big indoor scene data and deep learning
techniques to synthesize furniture layouts. For example, Wang et
al. [2018] trained deep convolutional priors for indoor scene synthe-
sis. Ritchie et al. [2019] formulated deep convolutional generative
models for fast indoor scene synthesis. Recently, Wang et al. [2019]
devised the PlanIT approach for synthesizing indoor scenes using
relation graphs and spatial prior networks. Hu et al. [2020] learned
floor plan generation using layout graphs. Wu et al. [2019] formu-
lated a data-driven approach to generate floor plans by predicting
room and wall locations. While recent research on indoor layout
synthesis focuses on the visual realism of furniture arrangement and
synthesis efficiency, our approach focuses on synthesizing indoor
layouts that support human work activities.
Our work is inspired by the approach of Fu et al. [2017] for syn-

thesizing activity-associated indoor scenes via understanding object
relations with activities. Their activity relation graph is learned from
potential human positions in the floor plan. In contrast, we consider
the work experience and collaboration of workers and simulate
work activities via behavior trees. Our approach is also inspired
by Feng et al. [2016] for generating mid-scale layout designs (e.g.,
a shopping mall) considering navigation experience. Their agent
activities are predefined and fixed in optimization. In contrast, our
approach optimizes agent activities based on their physical fitness
and skills in addition to a workplace layout. In summary, our work
focuses on generating workspaces that facilitate human work ac-
tivities and collaboration. In addition, our approach synthesizes a
corresponding, compatible workplan that informs people about how
to perform tasks in the synthesized workspace.

2.2 Workspace Design
Workspace design is vital to efficient work production. Depend-
ing on the workplaces (e.g., offices, warehouses, kitchens, super-
markets), workspace design involves the positioning of machines,
instruments, materials, and controls on the production site. In ar-
ranging such resources, it is important to consider human factors
such as accessibility, comfort, and work ergonomics. Davenport
Campbell, an innovative interior design and architecture firm in
Sydney, noted that changing the physical workspace would change
the way people behave, and that can make all the difference to em-
ployee well-being, performance, productivity and organizational
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Fig. 3. An overview of our approach.

results [Campbell 2013]. They emphasize the importance of apply-
ing human-centered design principles to creating workspaces, such
as adapting the workspaces to the individual needs, preferences,
and skills of the staff to help them perform. Such principles inspired
our computational workspace design approach, which optimizes a
workspace by considering individual qualities such as the fitness,
work skill, and preferences of the staff.

Human factors and industrial engineering researchers have inves-
tigated howworkspace designmay relate to efficiency and productiv-
ity [Brill 1992; Kämpf-Dern and Konkol 2017], workload [Carayon
et al. 2003], and workers’ health [Broberg 2010; Robertson et al.
2008]. A lean-oriented production layout [Schneider and Ettl 2012]
emphasizes a seamless flow of people, material and information,
improving workforce morale, efficiency, and production cost effec-
tiveness. Refer to the book by Pizag [2015] for guidelines of creating
a thriving workspace. In evaluating the performance of a workspace,
our approach also considers common metrics such as time efficiency
and obstacle avoidance.

Researchers have also devised computer-aided design (CAD) sys-
tems to aid workspace design [Chaffin 2008]. Nagy et al. [2013]
developed a system for evaluating work characteristics and provid-
ing guidance for designing workstations for an office. Aboulissane
et al. [2019] and Shah et al. [2010] developed CAD tools for opti-
mizing the workspaces of parallel robots. Researchers have also
applied agent-based simulations for evaluating manufacturing sys-
tems [Ruiz et al. 2006] and for predicting workers’ behaviors on
construction sites [Binhomaid and Hegazy 2020] and warehous-
es [Pawlewski 2015; Ribino et al. 2018]. Compared to existing tools,
our novelty lies on jointly synthesizing a pair of complementary
workspace and workplan to optimize different work metrics, in-
formed by agent-based simulations in the loop.

2.3 Task Planning
Graphics and robotics researchers have been working on task plan-
ning, which is relevant to workplan design. Bai et al. [2012] in-
troduced a physics-based method for synthesizing concurrent ob-
ject manipulation tasks for virtual characters. Agrawal and van de
Panne [2016] generated task-specific locomotion plans for charac-
ter animation. Conversely, Ha et al. [2017] jointly optimized the
morphology and motion aspects of a robot for a given task. Baykal
et al. [2017] optimized the kinematic design of piecewise cylindri-
cal robots to maximize the reachable region in highly constrained
settings. Recently, Wang et al. [2020] devised the Scene Mover to

perform move planning for scene arrangement using deep reinforce-
ment learning. On the other hand, robotics researchers have tack-
led task planning using methods such as semantic maps [Galindo
et al. 2008] and backward-forward search [Grey et al. 2016]. Re-
searchers have also investigated human-robot interaction in task
planning [Alami et al. 2005], and the explicability and predictability
of robot task plans [Zhang et al. 2017]. Refer to a survey [Alatartsev
et al. 2015] for a review on robot task planning literature. Compared
to the previous works, our approach jointly considers the physical
capabilities and skills of the staff agents, and the workspace layout,
in synthesizing an optimized workplan for task assignments.
Workplan design is also related to production planning [Bitran

and Tirupati 1993; Guide Jr 2000; Nishida 1991] and scheduling [Graves
1981] in operations research. The book by Malakooti [2014] dis-
cusses the topic in depth. It summarizes the common objectives in
design, planning, and control of production systems, which include
minimizing costs, risk, use of energy, etc. and maximizing produc-
tivity, flexibility, customer satisfaction, employees’ job satisfaction,
agility, etc. Such discussions informed us of the work performance
metrics to incorporate into our workplan design formulation. In
addition to jointly synthesizing a workspace and a compatible work-
plan, our approach also keeps track of a set of Pareto-optimal design
solutions with strengths on different objectives (e.g., performance,
workload balance), which designers can adopt to cope with the
changing demands of a workplace.

3 OVERVIEW
Fast food kitchens are a typical example of functional workspaces
in which their indoor layout design involves a substantial amount
of individuals’ activities and interaction with utilities. By using it as
an illustrative example, we explain how our approach synthesizes
a workspace and a workplan to facilitate human collaboration to
achieve goals such as enhancing work performance. In this exam-
ple, the equipment objects in the workspace are restored from a
McDonald’s patent [Ulfig and Venetucci 1997].
Figure 3 illustrates our approach. Given an input space (e.g.,

a kitchen’s space), work equipment (e.g., fryer, drink dispenser,
cashier), the staff agents with their properties (e.g., walking speed),
and a task list (e.g., make drinks, assemble burgers), our goal is to
synthesize an appropriate workspace and a workplan that consid-
ers individual work experience and achieve workspace production
goals.
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Our workplace synthesis is achieved by optimizing a workspace
and a workplan against workload costs, performance costs, and user-
defined layout costs. The performance costs evaluate the overall
work performance associated with the workspace and workplan
such as efficiency and collision level. The workload costs evaluate
the workload and collaboration experience perceived by the staff
agents. The user-specified layout costs encode design priors such
as object alignment. We elaborate the cost formulation in Section 6.

The core of our approach is an optimization framework compris-
ing two parts: workspace optimization and workplan optimization
(Section 8). We encode the above considerations as the optimiza-
tion goals which are evaluated via agent-based simulations of the
staff working in the synthesized workspace according to the syn-
thesized workplan. Our approach performs the two optimizations
alternatively. In the workspace optimization, our approach modifies
the equipment object layout by object arrangement moves. The
workspace is iteratively updated until it attains an optimized solu-
tion. Then the workplan optimization will take over to optimize
the workplan by assigning tasks to the staff. The workspace opti-
mizer then takes the synthesized workplan and further optimizes
the workspace. The two optimizations are alternatively applied until
convergence.

At each optimization iteration, we perform an agent-based simu-
lation to evaluate the current workspace and workplan. As a typical
optimization would require hundreds of iterations, for efficiency, we
use a scheduler approach to expedite the agent-based simulations
(Section 5 and 7). This approach uses a behavior tree and an A* path-
finding technique to execute tasks for agents. At the beginning, our
staff agents are assigned with tasks that they need to perform over
a period of time. Our scheduler orders and executes tasks in a par-
ticular sequence based on the incoming job requests (e.g., customer
order requests). The work simulation proceeds efficiently to yield
metrics for evaluating the work process.

Through a Pareto simulated annealing process, our approach also
keeps track of the Pareto front containing a set of Pareto-optimal
solutions with strengths on different work-related criteria, which
designers can adopt to set up workspaces and workplans to cope
with different work requirements.
4 PROBLEM FORMULATION

4.1 Representation
Figure 3 shows the workspace and workplan arrangement for a fast
food kitchen with four staff members, which we use for illustrating
our approach. A solution 𝜙 = {WS,WP} consists of a workspace
WS and a workplanWP, as follows:

Workspace. The workspace WS = {(p𝑖 , 𝑜𝑖 )} consists of the tu-
ples of the equipment objects, where p𝑖 ∈ R2 refers to the floor
position of the center of object 𝑖 and 𝑜𝑖 ∈ {0, 𝜋2 , 𝜋,

3𝜋
2 } refers to

its orientation. As equipment objects in a workspace are usually
regularly oriented, each object is only allowed to rotate by 90 degree
for solution search efficiency in the optimization process. Note that
not all equipment objects can be accessed from all sides, e.g., the
freezer is only accessible at the front.

Workplan. The workplan WP = {𝜏𝑖 } consists of the sequence
𝜏𝑖 of assigned tasks to each staff member 𝑖 . Each task is given a

Table 1. Equipment and tasks of the fast food kitchen restaurant example.

Equipment Tasks
(a) Vegetable fryer (1) Greet customers
(b) French fry rack (2) Make drinks
(c) Fries incubator (3) Check fries expiration
(d) Bun pan rack (4) Cook & dry fries
(e) Bun grill toaster (5) Package fries
(f) Freezer (6) Check food expiration
(g) Grill station (7) Make toasted bread
(h) Cooked food incubator (8) Cook patties
(i) Burger-making table (9) Assemble burgers
(j) Drink & food prep (10) Package order & deliver
(k) Register

task index. For example, 𝜏𝑖 = (1, 4, 5) means that staff member 𝑖
is assigned with tasks with indexes 1, 4, and 5, ordered by their
priorities (i.e. Task 1’s priority is higher than Task 4’s). Note that it
is possible to assign the same task to multiple staff members.

Table 1 depicts the equipment objects and the tasks of the fast food
kitchen. Essentially, each solution 𝜙 denotes how the equipment
objects are arranged in the workspace and the task assignment for
each staff member. Based on this specification, an agent-based work
simulation is run to evaluate the quality of solution 𝜙 according to
some cost metrics. In the simulation, the staff agents will interact
with the equipment objects according to their assigned tasks. For
example, when a new customer order comes, a staff member might
be in charge of greeting the customer and making drinks, while
another staff member might be in charge of cooking and drying fries.
Section 7 contains more details. Overall, our approach optimizes
the workspace and workplan by updating solution 𝜙 iteratively.

4.2 Optimization Objective
Our approach aims to optimize a workspace and a workplan to
achieve a number of work-related goals. We encode common work-
place considerations regarding the performance, workload, and
design priors into our optimization framework. Note that our frame-
work can also be extended to encode additional goals and constraints
if needed. Our approach synthesizes a solution 𝜙 by minimizing the
following total cost function:

𝐶Total (𝜙) = CPwP
T + CWwW

T + CLwL
T, (1)

where 𝐶P = [𝐶Efficiency,𝐶Congestion,𝐶Obstacle] is a vector of per-
formance costs comprising efficiency, congestion avoidance, and
obstacle avoidance cost terms. wP stores the weights of these cost
terms.𝐶W = [𝐶Walk Effort,𝐶Turn Effort,𝐶Walk Balance,𝐶Turn Balance] is
a vector of workload costs comprising effort and workload bal-
ance considerations, and wW stores the corresponding weights.
𝐶L = [𝐶Wall,𝐶Align] is a vector of layout costs and wL stores the
weights. The layout costs encode the design priors specific to the
type of the workspace to be synthesized.

5 STAFF AGENT MODEL
In our agent-based work simulation, we use staff agents to evaluate
the object arrangement, individual work experience, and efficiency
of production offered by a workspace and a workplan. We use a
simple staff agent model to simulate a typical working process in
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Fig. 4. The behavior tree for the “cook & dry fries” task. Based on the
selector node (arrow symbol), a staff agent checks if there is any fries order
or if the fries incubator has no fries. If a precondition (in orange) is true, the
staff agent executes a sequence of actions (move to fry rack, take fries, etc.)
to prepare fries.

the workspace. A staff agent represents a human who works at the
workspace with the following properties: (a) physical fitness; and
(b) work skills (locomotion and task familiarity). These properties
help us evaluate individual work experience at the workspace and
the overall performance.

Task Execution with Behavior Tree. Each task is associated with
a behavior tree, which encodes a series of actions that need to be
performed by a staff agent to accomplish the task. Behavior tree is
widely used for execution planning, which provides a good extent of
flexibility (e.g., executing two different states at once) compared to
finite state machine in authoring behaviors for intelligent agents in
games. Generally, it comprises selector nodes that describe precon-
ditions and action nodes that denote task destination and execution
time. By using control flow nodes, it offers good modularity, scal-
ability, reusability, and flexibility for defining tasks for different
workspaces, akin to defining behaviors for non-player characters
for computer games or for robots. Refer to [Colledanchise and Ögren
2018] for technical details of behavior trees. The supplementary ma-
terial contains a general behavior tree structure and several exam-
ples with description which can be adopted for modeling different
work processes.

Figure 4 shows a behavior tree for the “cook & dry fries” task for
the fast food kitchen. To model inter-dependency, we use control
flow nodes to create preconditions which are checked before task
execution. In this example, two precondition nodes (in orange) are
used to determine whether the “cook & dry fries” task can execute.
Besides, a staff agent only can execute one task at a time.

5.1 Physical Fitness
Physical Endurance. Physical endurance is a way to measure one’s

body fitness. As our approach focuses on individual work experience,
we define physical endurance from two perspectives: walking and
turning. Our approach considers physical endurance in computing
the workload costs for the staff. It considers the physical fitness
of the staff members in assigning tasks to them. For example, a
physically-strong member could be assigned with more physically
demanding tasks, which may involve more walking or turning. To
model physical endurance, each staff member has a walk intolerance

Fig. 5. Properties of the staff agents of the fast food kitchen example.

level 𝛿Walk ∈ [0, 1] and a turn intolerance level 𝛿Turn ∈ [0, 1]. A
high walk (turn) intolerance level means the staff member does not
prefer walking (turning) at work.

Locomotion. In general, people’s walking speeds depend on their
age, gender and height [Crosbie et al. 1997]. Based on walking speed
studies [TranSafety 1997], for people whose age is below 65, we set
the minimum walking speed as 𝑠min = 1.0ms−1 and the maximum
walking speed as 𝑠max = 1.5ms−1. A staff agent’s walking speed is:

𝑠 = 𝑠min + 𝜌 (𝑠max − 𝑠min), (2)

where 𝜌 ∈ [0, 1] is varied based on the fitness of the person that the
staff agent represents. We set 𝜌 to either 0, 0.5 or 1.0 to simulate
different walking speeds (slow, normal and fast).

5.2 Work Skill
Task Familiarity. Employers usually assess the skills of their po-

tential staff during the hiring process. Skill development also hap-
pens in a workspace after some time of training or working, there-
fore the staffmay possess the same skill set but experienced staffmay
have higher familiarity for specific tasks which they have worked on
for some time. In our running example, our staff agent’s familiarity
with each task is set to be low, medium or high. Such settings will
affect their speed of finishing tasks in the work simulation. Figure 5
shows the physical fitness and task familiarity parameters of the
staff agents of the fast food kitchen example.

6 COST TERMS
We discuss the details of the formulation of the costs, namely, per-
formance costs, workload costs, and layout costs, in this section.

6.1 Performance Costs
The performance costs relate to the main work performance of-
fered by a workspace and a workplan. For example, the main work
performance of a fast food kitchen is to prepare food to satisfy cus-
tomers’ orders efficiently and to provide a comfortable workspace.
The workspace and workplan should be optimized with respect to
such performance goals. We consider three performance-related
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costs: efficiency cost, congestion cost, and obstacle avoidance cost.

CPwP
T = 𝑤Efficiency𝐶Efficiency (𝜙) +𝑤Congestion𝐶Congestion (𝜙)

+ 𝑤Obstacle𝐶Obstacle (𝜙). (3)

Efficiency. We want to optimize the efficiency of serving work
orders. Specifically, we formulate a cost to penalize the time needed
for completing all work orders:

𝐶Efficiency (𝜙) = 1 − exp(−
∑𝑀
𝑖=1 𝑡 (𝑖)
𝑀𝜎𝑡

), (4)

where 𝑡 (𝑖) is the service time taken to complete work order 𝑖 com-
puted from our work simulation. A work order is associated with
some tasks that need to be accomplished.𝑀 denotes the total num-
ber of work orders. 𝜎𝑡 refers to the time needed to complete the
work order with the maximum anticipated service time. A work
order’s service time is estimated empirically by summing up the
time needed to finish all of its constituent tasks. For the fast food
kitchen used as the illustrative example, this cost refers to minimiz-
ing the service time for satisfying all the customer meal orders in a
simulation. Refer to Section 7 for more details.

Congestion Avoidance. We want to avoid congested locations in-
duced by the workspace and workplan design as congestion results
in inconvenience and also safety risks as the staff may bump into
each other [Thomas et al. 2006]. As illustrated by Figure 6(a), a loca-
tion is congested if the paths of multiple staff agents pass through
the same location. For example, if multiple staff agents need to pass
through the same narrow walkway in a kitchen when executing
the workplan, the walkway is regarded as congested. We define a
congestion avoidance cost term accordingly:

𝐶Congestion (𝜙) =
1

|𝐿 |𝑃
∑
𝑙 ∈𝐿

𝑝 (𝑙). (5)

In this equation, 𝐿 refers to the set of locations where congestion
is evaluated. In our implementation, we sample these locations in
the layout by fitting a grid with a regular interval of 1m. Note that
only locations on the free space (i.e. not occupied by an object) are
evaluated. For a location 𝑙 ∈ 𝐿, function 𝑝 (𝑙) returns the number
of walking paths that pass through location 𝑙 ’s neighborhood (i.e.
within 1m of location 𝑙 ) in all work orders. Our approach computes
𝑝 (𝑙) from the work simulation described in Section 7. 𝑃 is the maxi-
mum number of paths passing through the neighborhood, and is
empirically set as the number of agents multiplied by the total num-
ber of work orders. This cost term essentially penalizes a workspace
and workplan that would result in the staff walking across the same
location, hence avoiding congestion.

Obstacle Avoidance. We also want to ensure that the workspace
is spacious and uncluttered for smooth navigation and operation.
People tend to keep their comfort zones free of obstacles as they
walk. For a staff agent in the workspace, we define a staff agent’s
comfort zone as a circle centered at the agent’s position with a
radius of 1.219m [Hall 1966].
As the staff agents navigate in the workspace, we want to keep

their comfort zones free of obstacles. To achieve this goal, we in-
clude a obstacle avoidance cost term, which evaluates the average
percentage of comfort zone area occupied by obstacles along the

Fig. 6. Illustration of (a) congestion and (b) obstacle avoidance considera-
tions.
walking paths of the staff agents. A high cost means that the agents
encounter a large amount of obstacles in their comfort zones as they
walk along their paths to execute tasks. Figure 6(b) illustrates the
cost. The cost is defined as follows:

𝐶Obstacle (𝜙) =
1

𝑁Obstacle

∑
𝑖

∑
𝑥

𝜃 (𝜆𝑖 (𝑥)). (6)

In this equation, 𝜆𝑖 refers to a path of a staff agent 𝑖 . Each path is
sampled regularly with an interval of 1m for evaluation. 𝜃 (𝜆𝑖 (𝑥))
computes the percentage of comfort zone area occupied by obstacles
as the staff agent is at location 𝜆𝑖 (𝑥) on the path, which is obtained
from the work simulation described in Section 7. The cost is summed
over all paths of all agents. 𝑁Obstacle is a normalization constant
calculated as the total number of evaluations performed.

6.2 Workload Costs
The workload costs evaluate the work experience encountered by
the staff at the workspace. We define workload costs based on the
efforts spent by the staff and the balance in workload distribution
according to the workspace and workplan design:

CWwW
T = 𝑤Walk Effort𝐶Walk Effort (𝜙) +𝑤Turn Effort𝐶Turn Effort (𝜙)

+ 𝑤Walk Balance𝐶Walk Balance (𝜙)
+ 𝑤Turn Balance𝐶Turn Balance (𝜙) . (7)

Ideally, a workspace and a workplan should avoid unnecessary
efforts, for example, staff do not need to walk long distances to get
things. On the other hand, workload distribution should consider
the staff’s physical fitness [Dewi and Septiana 2015; MacDonald
2003]. Our workload costs consider such factors as follows.

Walk Effort. It evaluates the walk distances of the staff at work.
Each staff agent has a walk intolerance level 𝛿Walk ∈ [0, 1]. A high
value of 𝛿Walk means a staff agent does not prefer walking. The
walk effort cost is defined as:

𝐶Walk Effort (𝜙) = 1 − exp(−
∑𝑁
𝑖=1 𝛿

Walk
𝑖

𝐷𝑖∑𝑁
𝑖=1 𝛿

Walk
𝑖

𝐷max
), (8)

where 𝐷𝑖 is the total walk distances for staff agent 𝑖 in completing
all tasks as computed from the work simulation. 𝑁 refers to the
total number of staff agents. 𝛿Walk

𝑖
represents the walk intolerance

for staff agent 𝑖 . 𝐷max is a normalization constant calculated as
the layout’s perimeter length times the maximum number of tasks
performed by an agent in a simulation.

Turn Effort. Similarly, to evaluate turning effort, we calculate the
amount of body rotation a staff agent makes when it walks at work.
Each staff agent has a turn intolerance level 𝛿Turn ∈ [0, 1], where a
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Fig. 7. Given the same workplan for the staff agents, the effort consideration
guides the equipment objects of related tasks to stay together to reduce
walk and turn efforts.

high turn intolerance means a staff agent does not prefer turning.
The turning effort cost is defined as:

𝐶Turn Effort (𝜙) = 1 − exp(−
∑𝑁
𝑖=1 𝛿

Turn
𝑖

𝑅𝑖∑𝑁
𝑖=1 𝛿

Turn
𝑖

𝑅max
), (9)

where 𝑅𝑖 is the total body rotation of agent 𝑖 in completing all tasks.
𝛿Turn
𝑖

denotes the turn intolerance for agent 𝑖 . 𝑅max is a normaliza-
tion constant computed as (𝑒 − 1)𝜋 ; 𝑒 is the maximum number of
equipment objects interacted by an agent in a simulation.

Figure 7 shows the effects of effort considerations. Given the same
workplan, our optimizer brings the equipment objects of related
task closer to reduce walk and turn effort.

In our kitchen examples, two of the four staff agents have higher
walk and turn intolerances. Therefore the optimizer tends to assign
less physically-demanding tasks (in terms of walk and turn efforts)
to these agents. In our experiments, we further demonstrate how
the intolerances can be used for modeling teams with a physically-
challenged member or a robot assistant.

Walk Balance. Our approach also considers workload balance, in
other words, fairness, in distributing workload among the staff as
an unbalanced workload assignment may lead to low morale due
to unfairness [McBride and Metcalfe 1995]. We introduce a walk
balance cost to penalize a biased distribution of walk effort:

𝐶Walk Balance (𝜙) =

√∑𝑁
𝑖=1 (𝐷𝑖 − 𝐷avg)2

𝑁𝐷2
max

, (10)

where 𝑁 is the total number of staff agents in the workspace. 𝐷𝑖 is
the total walk distances for staff agent 𝑖 . 𝐷avg is the average total
walk distances of all staff agents.

Turn Balance. Similarly, we define a turn balance cost to penalize
a biased distribution of turn effort:

𝐶Turn Balance (𝜙) =

√∑𝑁
𝑖=1 (𝑅𝑖 − 𝑅avg)2

𝑁𝑅2max
, (11)

where 𝑅𝑖 is the total rotation for staff agent 𝑖 . 𝑅avg is the average
total rotation of all staff agents.
Figure 8 shows the effects of considering workload balancing.

With balancing, the staff agents share the turn and walk efforts
more evenly. Please refer to the supplementary material for more
details on the ablation study on different cost terms.

Fig. 8. With workload balancing, the walk and turn efforts are more evenly
distributed among the staff agents.

6.3 Layout Costs
Layout costs encode object arrangement styles in the workspace.
Inspired by previous work [Merrell et al. 2011], we consider wall
proximity and object alignment in the workspace:

CLwL
T = 𝑤Wall𝐶Wall (𝜙) +𝑤Align𝐶Align (𝜙). (12)

Wall Proximity. In a workspace design, some equipment (e.g., a
grill station) has to stay near a wall due to mechanical and electrical
constraints. Therefore, we define a wall cost to evaluate whether an
equipment object is close to a wall in the workspace:

𝐶Wall (𝜙) = 1 − exp(−
∑
𝑖𝑊 (𝑖)
𝜎Wall

), (13)

where𝑊 (𝑖) returns the distance between object 𝑖 and its nearest
wall if the distance is longer than 1m, and zero otherwise. 𝜎Wall is a
normalization constant set as the maximum possible distance to the
nearest wall.

Object Alignment. We also encourage object alignment for neat-
ness. In our running example, all objects near the wall should be
aligned with the object that is closest to the wall. For an object near
the center of the layout, it aligns with the nearest larger object. The
object alignment cost is defined as:

𝐶Align (𝜙) = 1 − exp(−
∑
𝑖 𝐴(𝑖)
𝜎Align

), (14)

where 𝐴(𝑖) returns the distances between object 𝑖 and its nearby
target object to achieve the nearest alignment (left, right, or center-
alignment). 𝜎Align is empirically set as 0.2 to control the penalty.

7 WORK SIMULATION
At each iteration of the optimization, our approach proposes a so-
lution comprising a workspace and a workplan. Based on this pro-
posed solution, our approach runs a work simulation to compute
the performance and workload costs to evaluate the solution.

Before simulation, each staff agent 𝑖 is assigned with a sequence
of tasks 𝜏𝑖 (ordered by their priorities) according to the workplan.
During the simulation, a work order is generated around every 40

frames. A work order is associated with some tasks that need to
be accomplished. For our kitchen example, a work order refers to
a customer meal order (e.g., “ordering fries”), which is associated
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Fig. 9. Workspace optimization. Given a fixed workplan, our approach opti-
mizes the workspace by moving the equipment objects.

with some service tasks (e.g., “(1) greet customers”→ “(4) cook &
dry fries”→ “(5) package fries”→ “(10) package order & deliver”).

At each frame of the simulation, our approach checks and updates
each staff agent’s status. If an agent is idle, it picks up an available
task it is in charge of according to the workplan. If there are two or
more available tasks which the agent is charge of, it will take the
task with the highest priority in its task sequence 𝜏𝑖 .
Each task is associated with a behavior tree which encodes the

preconditions and a series of actions for executing the task. Figure 4
shows the behavior tree of the "cook & dry fries” task as an example.
If the agent is not idle at a simulation frame, meaning that it is in
the middle of performing an assigned task, it will continue with
performing the next step of the assigned task according to the
assigned task’s behavior tree.

The simulation also depends on the staff agents’ properties. First,
the agents have different walking speeds. Second, the speed of
finishing an assigned task depends on the agent’s familiarity with
the task. In our experiment, a high task familiarity refers to a 50%
speed-up compared to a medium task familiarity, while a low task
familiarity refers to a 50% slowdown.

Our kitchen example refers to a fast food service scenario. In this
scenario, three customer meal orders are generated sequentially. We
include the details of the customer meal orders in the supplemen-
tary material. The simulation ends when all customer orders are
completed. During the simulation, we keep track of data such as the
agents’ walking paths, the obstacles in an agent’s comfort zone, etc.
for computing the performance and workload costs.

8 OPTIMIZATION
Our goal is to synthesize a solution 𝜙 comprising a workspace WS
and a workplan WP optimized with respect to the performance,
workload, and layout considerations. This is achieved by minimiz-
ing the total cost𝐶Total (𝜙) of Equation (1). Our optimization process
proceeds in two stages, workspace optimization (Figure 9) and work-
plan optimization (Figure 10), which are alternately applied. Refer
to the supplementary material for their cost values.

Akin to previous approaches [Merrell et al. 2011; Yeh et al. 2012],
we apply simulated annealing with a Metropolis-Hastings state-
searching step [Chib and Greenberg 1995] to optimize the solution
iteratively, for both the workspace optimization stage and the work-
plan optimization stage. For both optimizations, at each iteration, a
move is applied to modify the current solution 𝜙 to propose a solu-
tion 𝜙 ′, which is accepted with the following acceptance probability

Fig. 10. Workplan optimization. Given a fixed workspace, our approach
optimizes the workplan by assigning different tasks to the staff agents.

based on the Metropolis criterion:

P(𝜙 ′ |𝜙) = min(1, 𝑓 (𝜙
′)

𝑓 (𝜙) ), (15)

where f(𝜙) is a Boltzmann-like function that encodes the total cost:

𝑓 (𝜙) = exp(−1

𝑡
𝐶Total (𝜙)), (16)

and 𝑡 is the temperature parameter. Initially, a high temperature
𝑡 = 1.0 is set empirically, allowing the optimizer to extensively
explore the solution space. Over the iterations, 𝑡 drops gradually to
a low value near zero, making the optimizer more conservative in
accepting a proposed solution with a higher cost. The optimization
terminates as the change in 𝐶Total (𝜙) is smaller than 0.5% over the
past 20 iterations. More details are provided below.

Workspace Optimization. In this stage, our approach

Fig. 11. A grid of locations for
placing an object, which can be
oriented in multiples of 90◦.

optimizes the workspace while the
workplan is fixed. As Figure 11 shows,
each equipment object is associated
with a grid of locations that its cen-
ter can land on. The locations are reg-
ularly sampled with an equal inter-
val, taken as the shorter dimension of
the object multiplied by a scale factor.
At each location, four orientations in
multiples of 90◦ are possible. We define three types of moves for
the workspace optimization stage:

• Translation: Randomly select one object. Translate the object
in a random direction by a random amount.

• Rotation: Randomly select one object. Rotate the object by
90◦, 180◦, or 270◦.

• Swap: Randomly select two objects. Swap their positions and
orientations.

The swap move is helpful for preventing a large object from getting
stuck at a corner. At each iteration, a move is randomly selected and
applied to propose a solution. The three moves are selected with
probabilities 0.4, 0.3, and 0.3, respectively.

Workplan Optimization. In this stage, our approach optimizes
the workplan while the workspace is fixed. The sequences of as-
signed tasks {𝜏𝑖 } of the staff members are modified to optimize the
workplan. We define three types of moves:
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Fig. 12. An optimization process example of the fast food kitchen. (a) Result after running the first alternating optimization. (b) Final result.

• Reassignment: Randomly remove 1 to 3 tasks from an agent.
Reassign those tasks to another randomly-selected agent.

• Swap Assignments: Randomly select two agents. Select 1 to
3 tasks from each selected agent. Swap their selected tasks.

• Reorder Assignments: Randomly select 2 to 3 tasks of an
agent. Randomly reorder those tasks in that agent’s sequence.
Note that a task closer to the front of the sequence has a
higher priority to be taken in the work simulation.

Alternating Optimization. Optimizing the workspace and work-
plan simultaneously is difficult to keep track of. The optimizer would
easily get trapped in a poor local minimum due to the complex opti-
mization landscape. Instead, our approach applies the workspace
and workplan optimizations in an alternating optimization fash-
ion. We compare alternative optimization with another baseline
approach in the supplementary material.

At initialization, the objects in the workspace are randomly placed
and oriented. The staffmembers are randomly assigned with tasks in
the workplan. Then, a workspace optimization is applied, followed
by aworkplan optimization, hence finishing one round of alternating
optimization. Several rounds of alternating optimization are applied
until the solution converges.

Moreover, we adopt a coarse-to-fine strategy to help the optimizer
locate a solution more efficiently. For the workspace optimization in
the first round of alternating optimization, a coarse grid is used with
a larger interval between the locations. The purpose is to reduce
the search space to facilitate the search of a rough object placement
configuration. In the later rounds of the alternating optimization,
the workspace optimization uses finer grids with smaller intervals
between the locations, allowing the optimizer to refine the object
placement configuration. We also set a movement range for the
translation move to facilitate object location refinement. Refer to
the supplementary material for more details about coarse-to-fine
strategy and its ablation study. Figure 12 shows the synthesized
workspace and workplan after the first round of alternating opti-
mization and the final result.

Pareto Simulated Annealing. So far we formulate the optimization
problem by aggregating the individual cost terms into a weight-ed
sum as shown in Equation (1). We obtain one optimal solution with
respect to a set of fixed weights. In this section, we discuss how to
modify the formulation to employ the Pareto simulated annealing

technique (PSA) [Czyzżak and Jaszkiewicz 1998] to solve the multi-
objective optimization problem, attaining a set of Pareto-optimal
solutions with strengths on different objectives. The set is referred as
the Pareto front set. A solution in the set is Pareto-optimal, meaning
that at least one objective in the solution is not dominated by that
of any other solution in the set. In other words, each solution in the
set excels in at least one work-related criterion (e.g., efficiency).
The PSA process starts with a randomly generated sample set

of solutions for exploration. Each solution in this sample set is
associated with a set of weights, which are randomly initialized. On
the other hand, the process also keeps a Pareto front set containing
Pareto-optimal solutions discovered so far.
In each iteration of the exploration, a current solution 𝜙 in the

sample set is perturbed by a move to propose a new solution 𝜙 ′. The
new solution is compared to solutions in the current Pareto front
set. If the new solution dominates any solution in the set, the Pareto
front set will be updated accordingly by adding the new solution
and removing the dominated solutions.

After updating the Pareto front set, the transition from the current
solution 𝜙 in the sample set to the new solution 𝜙 ′ is accepted with
the following probability:

P(𝜙 ′ |𝜙,w∗) = min(1, 𝑓 (𝜙
′,w∗)

𝑓 (𝜙,w∗)
) . (17)

Let 𝜙∗ be the nearest solution of the current solution 𝜙 in the sample
set in terms of the Euclidean distance. For notation convenience,
we define w∗ = {𝑤∗

𝑖
} as the associated set of weights of the nearest

solution 𝜙∗, where 𝑤∗
𝑖
corresponds to the weight for each cost

term 𝐶𝑖 (𝜙∗). Following the PSA formulation, the weights w∗ of the
nearest solution 𝜙∗ are updated such that the weight 𝑤∗

𝑖
of each

objective worse than the current solution 𝜙 ’s objective is scaled
up, and the weight 𝑤∗

𝑖
of each objective better than the current

solution 𝜙 ’s objective is scaled down. By updating the weights of
the nearest solution, a disperse set of solutions can be generated
for expanding the pareto set. Refer to [Czyzżak and Jaszkiewicz
1998] for theoretical explanation. 𝑓 is a Boltzmann-like function
comprising the weighted sum of costs using the nearest solution’s
weights w∗:

𝑓 (𝜙,w∗) = exp(−1

𝑡

∑
𝑖

𝑤∗
𝑖 𝐶𝑖 (𝜙)), (18)
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(a) Agent Properties (b) Cost Values of Synthesis Results

(c) Synthesized Workspaces and Workplans

Fig. 13. Three Pareto-optimal solutions for fast food kitchen. (a) Input agent properties. (b) Final cost values of the three solutions. (c) The synthesized
workspace and workplan of each solution. Overall, solution 1 excels in reducing walk and turn efforts, solution 2 excels in congestion avoidance, and solution 3
excels in efficiency. Refer to the main text for discussion on comparing the synthesis results.

where 𝑡 is the temperature parameter. Initially, a high temperature
𝑡 = 1.0 is set empirically, allowing the optimizer to explore the solu-
tion space extensively. By updating the weights w∗ of the nearest
solution 𝜙∗ as said, a disperse set of solutions are generated for
expanding the Pareto front set. The supplementary material shows
the pseudocode of the PSA integrated with our optimization.

9 EXPERIMENTS AND RESULTS
We implemented our approach using C# and the Unity game en-
gine. Our optimization approach was run on an Alienware machine
equipped with an Intel Core i7-9700 CPU, an NVIDIA GeForce RTX
2070 graphics card, and 32GB of RAM. Our approach synthesized
a workspace design in about 150 iterations and a workplan design
in about 100 iterations, depending on the input’s complexity. The

approach typically took about three rounds of alternating optimiza-
tion to synthesize a workspace and workplan, which took about
one hour based on our implementation. For PSA, we started with
3 − 5 solutions in the sample set for exploration. The PSA process
took about 3 − 4 hours to generate a Pareto front set. Speedup of
PSA is possible via parallel computing [Banos et al. 2006].

9.1 Different Workplaces
We apply our approach to synthesize workspaces and workplans for
different workplaces: fast food kitchen, supermarket, restaurant, and
donation center. Figure 13 and 14 show the input task lists, agent
properties, as well as the synthesized workspaces, workplans, and
the schedules of tasks of the agents. The supplementary material
contains more details of the inputs and results of the workplaces.
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Fig. 14. Results of different workplaces. For the table under agent properties, high gray intensity of a cell refers to high task familiarity.

We show three Pareto-optimal solutions for fast food kitchen, and
one solution for supermarket, restaurant, and donation center with
strengths on efficiency, walk effort, and turn effort.

Fast Food Kitchen. We synthesized a fast food kitchen that consists
of four staff agents and ten tasks. Totally, there were 30 solutions
in the final Pareto front set. Figure 13 shows the workspaces and
workplans of three Pareto-optimal solutions and their final cost
values. Overall, solution 1 excels in reducing work and turn efforts;
solution 2 excels in congestion avoidance; and solution 3 excels in
efficiency. We compare the solutions as follows.

Solution 1 and solution 3 have the same workspace but different
workplans. Solution 1 has a higher efficiency cost (see red ★) but a
lower congestion cost (see red +), comparing to solution 3. This is
because, in solution 1, Agent 3 (green) has a slow walking speed and
is assigned with two tasks that require walking a longer distance,
resulting in a high efficiency cost. On the other hand, since most
tasks are assigned to Agent 2 (orange) and 3 (green) in solution 1,
there is less overlap among the walk paths and hence less congestion.
Moreover, Agent 1 (blue) and Agent 4 (purple) have more idle time

in solution 1 than in solution 3, so the walk and turn balance costs
of solution 1 are higher than those of solution 3 (see red ^).

Comparing solution 1 with solution 2, we observe that solution 2
has a lower efficiency cost (see purple★) as staff agents are assigned
with familiar tasks in solution 2. Moreover, in solution 2, Agent 2
(orange) and Agent 3 (green) work in separate local spaces, resulting
in a lower congestion cost (see purple +). Walk and turn effort costs
(see purple ◦) of solution 2 are higher than those of solution 1 as
Agent 1 (blue) is assigned with tasks that result in have a long walk
path in the workspace in solution 2.

Comparing solution 2 with solution 3, we observe that solution 3
has a lower efficiency cost (green ★) but a higher congestion cost
(green +). Solution 3 assigns all food-making tasks (4,7,8 & 9) to
Agents 1-3 who are good at doing these tasks despite longer walking
distances needed. As we can observe in solution 3, their walk paths
overlap with each other, thus more congestion happens.

Supermarket. This scenario simulates a typical supermarket sce-
nario which has three food sections (seafood, butcher and bakery)
and ten shelves that store different types of items. Customers walk
in with a shopping list. They first visit the food sections to buy
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anything according to their shopping list. Then they check out the
shelves to buy any remaining item on their lists. If an item they look
for is unavailable on the shelf, they wait for a staff agent to load
supplies. Eventually, they finish buying all their goods, go to the
closest register to pay, and then leave the supermarket.
The simulation consists of eleven customers. There are six staff

agents working on five tasks (four stationary tasks and one mobile
task). Stationary tasks require the staff agents to stand at a counter
and serve customers. The mobile task requires the staff agents to
walk around the shelves and load supplies. Note that a staff agent
may be assignedwithmore than one task and it is up to the optimizer
to decide the task assignments.
Figure 14 shows the work skills and physical fitness of the staff

agents based on which tasks are assigned as we can observe. The
optimizer lets Agent 5 (cyan), who can walk very fast, to walk
around the shelves to load supplies. Agent 4 (purple) is assigned to
serve at the cashier and help out at the nearby bakery food section
occasionally. Besides, the shelves are aligned horizontally and they
provide enough space for the customers and staff to access.

Restaurant. This scenario simulates a dim sum restaurant with
four large tables and eleven small tables. Five staff agents need to
work together to accomplish four tasks: (1) Greet incoming cus-
tomers and help them find a table to sit; (2) Walk around with a food
cart and give customers the food they want; (3) Cook at the food
counter and serve customers; (4) Walk to the customer table and
check out the customer at the checkout counter. There are three
mobile tasks (Task 1, 2 and 4) and one stationary task (Task 3).
In this simulation, groups of customers (each group may have 1

to 12 people) walk and wait for staff agents to lead their way to the
table. Once they sit down, one person from that group walks to the
food counter to order noodles. The rest waits for the food cart to
pass by to order some dim sum. Once they finish eating, they will
request a staff agent to help them check out.
As shown in Figure 14, our table arrangement provides enough

accessibility space for customers and staff agents to walk around.
All staff agents are assigned with tasks they are good at based
on their skills and physical fitness. Our workplan optimizer sets
Agent 4 (purple) to help out the food counter as customers line up,
although itsmain task is to help customers check out. Ourworkspace
optimizer places the food counter as close to the checkout counter
as possible to reduce customers and staff walk distances.

Donation Center. This simulates a sorting scenario that involves
ten volunteers working to sort donation items into six categories:
canned food (A), toys (B), clothes (C), necessary products (D), pet
food (E), and electronic device (F). Among the unsorted items, 31%
are canned food, 28% are toys, 16% are clothes, 13% are necessary
products, 6% are pet food, and 6% are electronic devices.

There are six tables of different sizes in the scene: two tables with
a large capacity, two tables with a medium capacity, and two tables
with a small capacity. Each table is assigned to temporarily hold one
category of items. When a table is full, the staff needs to package the
items on the table into boxes and send the boxes to storage before
they could put items on the table again. To enable table category
assignment, we add a move type in the workspace optimization to
randomly swap item categories between two tables.

Fig. 15. Result with a wheelchair member with limited mobility (yellow).

There are three tasks in this scene: (1) get an item from a pallet
consisting of items of different categories and bring the item to a
table that it belongs to based on its category; (2) package the items
on a table into boxes; (3) send boxes to the storage. Each volunteer
is assigned with some tasks and item categories it is in charge of.
As shown in Figure 14, our workspace optimizer assigns item

categories to the tables based on their capacities. For example, a big
table is assigned with the canned food, which takes up 31% of the
unsorted items. The pallet is placed at the center with the tables
arranged around it to reduce the walk distances. In the workplan
arrangement, the six categories of items and the tasks are distributed
among the agents according to their properties. As we could observe
from workplan, more agents are assigned to sort canned food (A)
and toys (B) than pet food (E) and electronic device (F). For Agents 5-
8 who have low intolerance in movement and are good at packaging
(Task 2), they are all assigned to do Task 2. Since Agents 1-4 have
lower intolerance in movement and walk faster than Agents 9-10,
they are in charge of more categories.

9.2 Other Scenarios
Wheelchair Member with Limited Mobility. We include a wheel-

chair volunteer agent in the donation center example. Figure 15
shows the synthesis result. The wheelchair agent (yellow) has high
intolerance for movement. Our optimizer assigns this agent to per-
form packaging tasks at two tables. Note that the agent only moves
from one table to another table occasionally as it finishes the pack-
aging task at one table. The two tables where it works are put close
to each other to reduce its walk distances. The other agents help
with the mobile tasks including getting items from the pallet and
moving packages to the storage area.

Dynamic Workplan. Given a synthesized fixed workspace, our
approach can be applied to synthesize workplans dynamically based
on work demand. Figure 16 shows an example, where two different
workplans are synthesized for the morning and afternoon sessions.
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Fig. 16. Dynamic workplan example. Given the same workspace, our approach synthesizes (a) a morning workplan and (b) an afternoon workplan to satisfy
different work demands.

In the morning session, the customers are set to shop shelf items
more often than going to the food sections. In the synthesized morn-
ing workplan, Agent 5 (cyan) and Agent 6 (yellow) work together to
check whether supplies on the shelves are enough. In the afternoon
session, as the seafood and meat are on sale, customers tend to go
to either of these sections to buy food. In the afternoon workplan,
Agent 5 (cyan) serves as a runner to help out both sections instead
of serving at the cashier (as it did in the morning session). The
supplementary material contains one more example of including a
robot assistant in the restaurant. It also contains the details of the
input agent properties and tasks of all examples.

10 EVALUATION

10.1 Workspace Design
To validate our approach, we invited 15 participants to design fast
food kitchen workspaces, which are compared with our synthesis
results. All of the participants have some layout design background
(either majored in design, or conducted layout design projects in
university or industry). We designed an application which allows
a participant to arrange equipment objects in a fast food kitchen
space by simple operations to create a workspace.

Design Task. We asked the participants to use our application
to design an efficient and realistic workspace for a given fast food
kitchen workplan. During the design process, our participants were
able to move or rotate the kitchen equipment objects. They could
see the properties of different staff agents and their assigned tasks
according to the given workplan. They could also run a simulation
to see how the staff agents worked in the current workspace. After
each simulation, the simulation time and walk distances were dis-
played for participants to evaluate how the staff agents performed.
The participants could rearrange the equipment objects and run

simulations until they were satisfied with their results. The supple-
mentary material contains the screenshots of the application and
the kitchen workspaces created by the participants.

Result Analysis. To compare the workspaces created by the par-
ticipants with our synthesis results, we synthesized 15 different
workspaces with the same work plan using the workspace optimiza-
tion.We run simulations on all the workspaces using the Unity game
engine to obtain the simulation time, total walk distances, and total
body rotation. Moreover, we run simulations on the workspaces
with AnyLogic1, commercial simulation software widely used to
simulate traffic, retail operations, supply chains, and logistics for
research and business purposes. By using the same parameters (e.g.,
equipment locations, staff agents’ task sequences), we obtained the
simulation times in the workspaces via AnyLogic.

Table 2 compares themetrics computed on theworkspaces created
by the participants and our approach. The workspaces synthesized
by our approach attain shorter simulation times, meaning that the
given workplan is completed faster on the synthesized workspaces.
On average, in our synthesized workspaces, the total walk distance
of the agents is shorter and the total body rotation is also smaller,
indicating that the agents spend less effort in executing the work-
plan. We performed t-tests on the two groups of results for each
metric. All the p-values are smaller than 0.05, showing that there
are significant differences in all the performance metrics.

Besides, on average, it took a participant 144 movements and 43

rotations to create a workspace design, whereas our optimization-
based approach synthesized the workspaces fully automatically.
Our synthesized results showed a relatively large improvement in
terms of the total body rotation, likely because it was unintuitive
for the participants to consider the anticipated turn efforts in de-
signing a workspace manually, whereas our optimization approach
incorporates this consideration through the turn effort cost term.
1 https://www.anylogic.com/
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10.2 Real-world Workplace Simulation
To evaluate the synthesized workspace and workplan as a whole, we
conducted a preliminary real-world user study on workplace simu-
lation. The experiment simulated working in a mini warehouse with
many unsorted objects that needed to be recorded on a computer,
followed by warehousing. We invited 36 participants to simulate
working in the warehouse. The user study consisted of two con-
ditions given in a random order for counterbalancing. In one con-
dition, a pair of participants designed an efficient mini warehouse
workspace and workplan, which they followed to do the tasks. In
the other condition, the participants performed the tasks following
a workspace and workplan synthesized by our approach. The partic-
ipants first designed the workplan and workspace, then performed
both the manually- and automatically-generated scenarios. We per-
formed paired t-test to compare the completion times following
the participants’ designs and the synthesized design. There was a
significant difference in completion times following the participants’
designs (414s± 56) and the synthesized design (351s± 41); 𝑝 < 0.001,
suggesting that the workspace and workplan synthesized by our
optimization approach outperforms the participants’ designs. Please
refer to the supplementary material for comprehensive details about
this user study.

11 SUMMARY
Our work sheds light upon the novel research direction of jointly
synthesizing a workspace and a workplan. Using our approach, de-
signers can synthesize a workspace and a workplan optimized with
respect to common performance-related criteria such as efficiency,
congestion avoidance, and obstacle avoidance, and workload-related
factors such as walk effort, turn effort, and workload balances.

Limitations and Future Work. In designing a real workspace, there
are other considerations such as electrical constraints, mechanical
constraints, and safety requirements to satisfy in practice. A full
computational design tool should incorporate such constraints into
synthesizing a functional work layout. As it stands, our prototype,
which focuses on performance and workload criteria, complements
rather than replaces existing architectural design software.
Our approach only considers how the equipment layout may

affect work performance. There are other design and ergonomic
factors that could affect work. For example, the colors, lighting,
and furniture layout style of the workspace may affect the mood,
creativity, and productivity of the staff. In future work, it would
be interesting to incorporate findings from human factors and er-
gonomics research into a computational design framework for driv-
ing a comprehensive workspace optimization.
Our approach uses behavior tree with 𝐴∗ pathfinding to model

simulation because similar approaches have been widely adopted
in industry. For future work, other simulation models (e.g., ORCA)
which generate collision-free motion simulation can be used to
obtain more natural simulation results.

When introducing each parameter, we set the parameters empiri-
cally rather than measuring them from real-world experiments. In
practice, one could estimate performance parameters via wearable
devices (e.g., pedometers) and such data could be used for driving the
optimization. It would be interesting to combine our approach with

Table 2. Evaluation results. In the first and second rows, the numbers shown
are the means with the standard deviations in parentheses. The third row
shows the p-values of t-tests comparing the results created by the human
designers and by our approach.

AnyLogic
Simulation
Time (s)

Unity
Simulation
Time (s)

Total
Walk
Distances
(m)

Total
Body
Rotation
(deg)

Human 89 (5) 106 (6) 61.45 (7.00) 1,202 (156)
Ours 85 (3) 101 (4) 54.60 (5.15) 1,025 (131)
p-value 0.014 0.014 0.016 0.007

customized agent instructions [Lafreniere et al. 2016] to synthesize
workspaces and workplans for a sizeable work team.

For intuitiveness and efficiency, we use simple work simulations
specified by behavior trees for evaluating a workspace and work-
plan solution at each iteration. In reality, work processes could be
more complex due to stochastic work events and human behaviors.
Therefore, it is important to minimize the gap between simulation
and reality. Recent work [Xu et al. 2019] in designing hybrid UAVs
controller proposed an error integral block to eliminate the system’s
steady-state error (induced by flying). Inspired by their error model,
we could also model possible errors during simulation to close the
gap between simulation and reality. For example, the staff may make
mistakes from time to time; equipment objects may stop working.
By using a more complex work simulation model, our approach
could synthesize a robust workspace and a workplan tolerant to
mistakes and flexible to changes.
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