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1 ABSTRACT
This document is the supplementary material that our main paper
refers to.

Fig. 1. A common behavior tree structure. It acontains a selector node
(represented by the question mark) that describe preconditions (in
orange), as well as action nodes (in blue) that encode execution and
task destination.

2 BEHAVIOR TREE
We use behavior trees to encode human behaviors for our simulations.
Behavior trees are flexible for authoring behaviors for agents. They
are also a popular choice in the industry for designing agent behaviors
for games and commercial applications. Figure 1 shows a common
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Fig. 2. The behavior tree example of the "serve at cashier" task for
the supermarket scenario.

Fig. 3. The behavior tree example of the "serve customer" task for the
restaurant scenario.

behavior tree structure. Generally, it consists of selector nodes that
describe preconditions (in orange) and action nodes(in blue) that
represent task destination and execution time.

Figure 2, 3 and 4 show the behavior trees of the "serve at cashier"
task, "serve customer" task, and "get items from pallet" task for the
supermarket, restaurant and donation center examples, respectively.
These behavior trees follow a similar structure as that of the common
behavior tree structure in Figure 1.

3 ADDITIONAL DETAILS OF COARSE-TO-FINE
STRATEGY

In workspace optimization, we employ a coarse-to-fine strategy to
accelerate optimization. In this strategy, each equipment object is
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Fig. 4. The behavior tree example of the "get items from pallet" task
for the donation center scenario.

Fig. 5. Illustration of the coarse-to-fine strategy used in workspace
optimization. Each location in the grid represents a location that an
equipment object’s center can land on.

Fig. 6. Overall cost comparison for workspace optimization with and
without using the coarse-to-fine strategy.

associated with a grid of locations that its center can land on. In
the first round of alternating optimization, a coarse grid with larger
intervals between locations is used as shown in Figure 5(a). The
purpose is to reduce the search space to facilitate the search of a
rough object placement configuration. In the later rounds of the
alternating optimization, the workspace optimization uses finer grids

with smaller intervals between locations, allowing the optimizer to
refine the object placement configuration as shown in Figure 5(b).

3.1 Comparison with baseline
We conduct an ablation study to show the effectiveness of the coarse-
to-fine strategy. We compare two approaches, one approach with the
coarse-to-fine strategy and the other without the coarse-to-fine strat-
egy (baseline). For a fair comparison, we run workspace optimization
for 150 iterations while keeping the workplan fixed. In the baseline
approach, we use move types described in Section 8 of the main
paper. In the coarse-to-fine strategy approach, a coarse grid is used to
move objects for the first 50 iterations and a finer grid is used in the
last 100 iterations. We include efficiency, walk effort, turn effort and
wall proximity objective for evaluation and set each objective weight
as 0.3, 0.25, 0.25, and 0.2, respectivevly.

The overall cost comparison graph is shown in Figure 6. The final
cost details comparison is shown in Table 1. Based on the observation,
the baseline approach got trapped at a local minimum where the wall
proximity cost was not fully optimized. One possible reason is that
our solution space is complex with many local minimums so it is
difficult for the optimizer to locate a good configuration within 150
iterations. In contrast, the coarse stage of our approach helps the
optimizer quickly jump close to a good local optimum, reducing the
total number of iterations needed.

Fig. 7. Total cost comparison of the two baseline approaches and the
alternative optimization approach.

4 ADDITIONAL DETAILS OF ALTERNATIVE
OPTIMIZATION

To demonstrate the effectiveness of alternative optimization, we
compare our alternative optimization approach with two baseline
approaches: monolithic approach (Mono) and monolithic approach
with coarse-to-fine strategy.

For a fair comparison, we run workspace and workplan optimiza-
tion for each approach with a total of 160 iterations. In the monolithic
approach, we optimize the workspace and workplan simultaneously.
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Table 1. Detail cost comparison for workspace optimization with and without the coarse-to-fine strategy. Weighted costs for efficiency, walk effort,
turn effort and wall proximity are shown with weights 0.3, 0.25, 0.25, and 0.2.

Total Cost Efficiency Cost Walk Effort Cost Turn Effort Cost Wall Proximity Cost
Without Coarse-to-fine strategy 0.70 0.17 0.10 0.23 0.2
With Coarse-to-fine strategy 0.53 0.19 0.11 0.23 0

Table 2. Cost comparison details before and after workspace optimization (Figure8) and workplan optimization (Figure 9).

Total
Cost Efficiency Congestion Collision

Walk
Effort

Turn
Effort

Walk
Balance

Turn
Balance

Wall
Proximity

Object
Alignment

Before workspace
optimization 0.507 0.16 0.14 0 0.036 0.041 0.01 0.02 0 0.10

After workspace
optimization 0.320 0.14 0.01 0 0.021 0.060 0.01 0.04 0 0.04

Before workplan
optimization 0.49 0.2 0 0 0.046 0.083 0.046 0.083 0 0.03

After workplan
optimization 0.40 0.11 0.2 0 0.013 0.044 0.0025 0.002 0 0.03

In the monolithic approach with the coarse-to-fine strategy, we follow
a similar manner: in the first 80 iterations, a coarse grid is used to
move equipment objects; and in the last 80 iterations, a finer grid is
used. In the alternative optimization approach, we have two rounds
of optimization and each (workspace or workplan) optimization runs
for 40 iterations. In addition, we apply the coarse-to-fine strategy
when running the workspace optimization.

For evaluation, we include efficiency, walk effort, turn effort and
wall proximity objective cost with cost weight 0.3, 0.25, 0.25, and
0.2, respectively. The final cost results are shown in Figure 7. We
observed that the monoliphic approach failed to converge to a local
minimum. When adding the coarse-to-fine strategy to the monoliphic
approach, the optimizer tends to get trapped at a local minimum. In
contrast, the alternative optimization approach can locate a optimal
solution in the end. This is probably because the solution space is
complex with many local minimums; therefore it is hard to sample a
move to result in a good configuration. The alternating optimization
approach reduces the problem complexity and difficulty of search for
a good solution. In addition to an alternative scheme, we also design
moves specific to the workspace and workplan optimizations so that
our optimizer can explore the solution space more efficiently.

4.1 Fixed workplan in workspace optimization and
vice versa

We demonstrate the impact of fixing workspace (or workplan) before
and after one round of optimization in Figure 9 and Figure 8. When
the workplan is fixed, our workspace optimizer rearranged equipment
objects used by an agent when executing his sequence of tasks. When
the workspace is fixed, our workplan optimizer reassigned agents
with tasks based on the staff skill and location of objects. Table 2
shows cost comparison before and after the workspace (or workplan)
optimization.

Fig. 8. Workspace optimization. Given a fixed workplan, our approach
optimizes the workspace by moving the equipment objects.

Fig. 9. Workplan optimization. Given a fixed workspace, our approach
optimizes the workplan by assigning different tasks to the staff agents.

5 ADDITIONAL DETAILS OF PSA
Pseudo code for alternative optimization and modified version of
PSA (Duh and Brown,2007) are shown in Algorithm 1 and Algorithm
2.
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Algorithm 1: Alternative Optimization
Result: A set of pareto front solution

1 input: a initial set of solution S; a initial set of Pareto front
solution M;

2 alternative iteration O;List of temperature T;
3 MoveMode←Workspace Optimization;
4 counter← 0

5 while counter < O do
6 if Workspace OPtimization then
7 PSA(S,M, t, MoveMode);
8 MoveMode←Workplan Optimization
9 else

10 PSA(S,M, t, MoveMode);
11 MoveMode←Workspace Optimization
12 end
13 increasee counter ; 𝑡 ← 𝑇 [𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ]
14 end

Algorithm 2: Pareto Simulated Annealing (PSA)

Result: A set of pareto front solution M
1 input: a initial set of solutions S, a initial set of Pareto front

solution M, MoveMode; initial temperature T0;
2 set current temperature T to initial temperature T0
3 while stop conditions are not fulfilled do
4 for all 𝜙 ∈ 𝑆 do
5 Perturb a solution 𝜙 ′ based on MoveMode;
6 if 𝜙 ′ is not dominated by 𝜙 then
7 update set M with 𝜙 ′ ;
8 end
9 select 𝜙∗ ∈ S nearest (non-dominated) to 𝜙

10 if 𝜙∗ does not exist (or in the first iteration) then
11 then assign weights at random,
12 assuring ∀𝑖 w∗

𝑖
≥ 0 and

∑
𝑖 w∗𝑖 = 1 ;

13 else
14 for all objectives 𝑓𝑖 do
15

w∗𝑖 =
𝛼w𝑖 ,if 𝑓 (𝜙) < 𝑓 (𝜙∗)

w𝑖/𝛼,if 𝑓 (𝜙) ≥ 𝑓 (𝜙∗)
16 end
17 normalize the weights such that

∑
𝑖 w∗𝑖 = 1

18 end
19 update 𝜙 with 𝜙 ′, given 𝑃 (𝜙 ′ |𝜙,w∗,𝑇 )
20 end
21 decrease Temperature T;
22 end

6 ADDITIONAL DETAILS OF ANYLOGIC
AnyLogic is commercial simulation software widely used to simulate
traffic, retail operations, supply chains, and logistics for research and
business purposes. It provides a risk-free environment, high-quality
visualization, and capability to handle uncertainty in simulation mod-
els. In particular, we utilized its process modeling library to model the
fast food restaurant system in terms of process (e.g., job order), enti-
ties going through the process flow (e.g., customers), and resources
that entities use to perform action (e.g., object equipments). By using
the same parameters (e.g., equipment locations, staff agents’ task
sequences) as in our own simulations, we obtained the simulation
times in the workspaces via AnyLogic.

Fig. 10. Given the same workspace, efficiency consideration encour-
ages our optimizer to assign tasks based on the agents’ skills to
improve efficiency. For example, with the efficiency consideration in
(b), Agent 2 (orange) is assigned with Task 6 and 7 as it is good at
doing Task 5-9.

7 ABLATION STUDY
Figure 10, 11, 12, and 13 depict the importance of each objective cost
used in our optimization approach. These optimization objectives en-
code the performance and workload considerations. To demonstrate
the effectiveness of each cost, we conduct an ablation study as fol-
lows: to investigate the efficiency, congestion, and workload balance
criteria, we fixed the workspace and ran workplan optimization with
the corresponding cost term being omitted; to investigate the effort
criterion, we fixed the workplan and ran the workspace optimization
with the effort cost term being omitted.

Efficiency. Its goal is to improve the time efficiency of serving
work orders. With this consideration, our optimizer tends to assign
staff with the tasks they are good at to shorten food-cooking time and
service time. For instance, while Agent 2 (orange) is good at doing
Task 6 to 9, it was assigned to do Task 1 and 10 if efficiency is not
considered, as shown in the result of Figure 10 (a). If efficiency is
considered, that agent is assigned with Task 6 and 7.

Congestion. The congestion consideration is to avoid congested
locations induced by the workspace and workplan design. The con-
gestion consideration increases the chance of assigning tasks that use
nearby equipment to the same agent. For example, both Task 3 and
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Fig. 11. Given the same workspace, our optimizer tends to assign
tasks that use nearby equipment to the same agent. In this example,
both Task 3 and Task 5 use fries incubator and are assigned to Agent
4 (purple). With the congestion consideration as shown in (b), Task 4
which uses the french fries rack near the fries incubator is assigned to
Agent 4 (purple) instead of Agent 1 (blue). As a result, Agent 1 and
Agent 4’s movement become more localized. There is less overlap in
the agents’ paths and hence less congestion happens.

Task 5 use the fries incubator and are assigned to Agent 4 (purple) in
Figure 11 (a). If congestion is considered, as shown in Figure 11 (b),
Agent 4 (purple) instead of Agent 1 (blue) is assigned with Task 4
which uses the french fry rack that is near the fries incubator. Overall,
with the congestion consideration, Agent 1 and Agent 4’s movements
become more localized, and the agents’ walking paths tend to overlap
less as shown in Figure 11 (b), and hence less congestion happens.

Effort. This cost evaluates the work experience encountered by
the staff at the workspace. Figure 12 shows the effects of effort
considerations. Given the same workplan for staff agents, with the
effort consideration, our optimizer tends to arrange objects of related
tasks to stay together to reduce walk and turn efforts. For example,
the fries equipment objects are moved closer to the shelf since such
equipment objects are used in Task 4 and Task 5 by Agent 1 (blue).

Workload Balance. This cost evaluates the fairness in distributing
the workload among the staff. With the workload balance consider-
ation, our optimizer encourages a more even workload distribution
among the staff agents. As shown in Figure 13, the walk and turn
efforts are more evenly distributed among the staff agents, comparing
the agents’ paths in (b) with their paths in (a).

8 ADDITIONAL DETAILS OF WORKPLACE INPUTS
Given an input space, a set of work equipment, staff agents with
their properties, and a task list, our approach is capable of synthe-
sizng an appropriate workspace and workplan that respect individual
work experience and achieve workspace production goals. Below are
additional details of input of different workplaces.

Fast Food Kitchen. Figure 18 shows the front view of work equip-
ment of the fast food kitchen example. Table 4 shows the equipment
objects used in each task. Table 5 shows details of the three customer
meal orders used in the work simulation.

Fig. 12. Given the same workplan for the staff agents, the effort consid-
eration prompts the equipment objects of related tasks to stay together
to reduce walk and turn efforts. For example, the fries equipment ob-
jects used by Agent 1 (blue) are moved closer to the shelf so as to
reduce the walk and turn efforts of Agent 1.

Supermarket. We show equipment objects of the supermarket in
Figure 19 and list equipment objects used in each task in Table 6. We
also include details of the customer shopping lists in Table 7.

Restaurant. Figure 20 shows equipment objects used in the restau-
rant example. Table 8 describes equipment objects used for each task.
Table 9 reveals each customer group’s orders.

Donation Center. Figure 21 shows equipment used in the donation
center example.

9 ADDITIONAL DETAILS OF OTHER SCENARIOS
As described in the main paper, our approach can be extended to
handle other practical considerations such as dynamic workplan and
incorporation of staff members with different capabilities in the team.
We include additional details for other scenarios.

For ease of investigation, we use the basic weighted sum formula-
tion instead of PSA to optimize the total cost 𝐶Total (𝜙) (Equation (1)
in main paper) in synthesizing these results. We set the weights as
𝑤Efficiency = 0.2, 𝑤Congestion = 0.05, 𝑤Collision = 0.05, 𝑤Walk Effort =

0.25, 𝑤Turn Effort = 0.25, 𝑤Walk Balance = 0.05, 𝑤Turn Balance = 0.05,
𝑤Wall = 0.05, and 𝑤Align = 0.05.

Dynamic Workplan. We show all six agents’ properties of the
dynamic workplan example in Figure 22 and the customers’ shopping
lists for the morning and afternoon sessions in Table 10 and Table
11. As we could observe, Agent 5 (cyan) can walk very fast, so our
optimizer sends him to help load supplies with Agent 6 (yellow)
in the morning; and sends him to help out the seafood counter and
butcher counter in the afternoon.

Wheelchair Member with Limited Mobility. . We include a wheelchair
volunteer agent (yellow) in the scene. All agent properties are shown
in Figure 24. Different from the donation center scenario, there are
five tables of different sizes and the six volunteer agents are asked to
work together to sort donation items based on five categories: canned
food (A), toys (B), clothes (C), necessary products (D), and pet food
(E). 40% is canned food, 30% is toys, 12% is clothes, 12% is necessary
products, and 6% is pet food among the unsorted items.
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Fig. 13. With workload balancing, the walk and turn efforts are distributed among the staff agents as shown by the paths in (b) compared with the
paths in (a).

Rotbot Assistant. We include a robot (Agent 5) in the restaurant
example as a staff member. Figure 23 shows all five agents’ properties
and the synthesis result. Table 12 shows all customer groups’ orders.
The robot agent has a high walking speed of 1.50ms−1 and a walk
intolerance set as zero. As a result, our optimizer assigned the robot
with tasks that involve high movement to relieve the workload of the
other staff agents.

10 REAL HUMAN WORKPLACE SIMULATION
10.1 Setup

Overview. To evaluate the effectiveness of our approach for gen-
erating a feasible workspace and workplan in comparison to user’s
design, we also conducted a preliminary user study involving real
human workplace simulation. The goal of this experiment was to
simulate working in a mini warehouse where there were many un-
sorted objects that needed to be recorded in a computer database and
then put into storage according to their types.

Participants. We recruited 18 pairs of participants (36 people in
total) to simulate working in a mini warehouse. The participants were
university students aged 19 to 25, with about 80% of males and 20%
of females. The user study was IRB-approved.

Conditions. The user study consisted of two conditions of experi-
ments given in a random order for counterbalancing. In one condition
of the experiment, the participants would first design a mini ware-
house workspace and workplan, then execute the tasks accordingly.
In the other condition of the experiment, we asked the same group
of participants to carry out the tasks following the workplace and
workplan generated by our approach. The participants would first
design the workplan/workspace, then perform both the manually-
and automatically-generated scenarios. We gave the participants a
five-minute warm-up session at the beginning of each condition to
help them get familiar with the experiment. At the end, we asked the
participants to fill out a survey.

Fig. 14. The mini warehouse layout. The PC’s location is fixed in the
layout. In total, we have six boxes plus one lottery box to be assigned
to seven locations (Loc 1,...,Loc 7). Note that the lottery box can only
be placed at locations 2,3,4 or 5. Depends on the box placement
location, a different length of the barcode of that object type will be
used for data entry in Task 1. In particular, for boxes at locations 1, 2,
or 7, objects with three-digit barcodes of that object type will be placed
in the lottery box at the beginning. Otherwise, objects with six-digit
barcodes of that object type will be placed in the lottery box.
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Fig. 15. The workspace generated by our approach. In the correspond-
ing generated workplan, the runner is assigned to do Task 2 and the
wheelchair person is assigned to do Task 1.

Tasks. Following the workplace and workplan either designed by a
pair of participants or generated by our approach, the two participants
collaborate to complete two tasks. In the first task, one participant
went to the lottery box, which stored unsorted objects, and took one
or multiple object(s) to a PC station to record the object(s)’ barcode.
In the second task, the other participant took the recorded object(s)
and put them in the correct boxes according to their types.

Roles. There were two roles in the experiments, namely, runner
and wheelchair person. The runner could walk but could only carry
one object at a time. The wheelchair person moved using a wheelchair
but could carry three objects at a time. In the condition with our gen-
erated workplan, the two participants were assigned two different
roles by our approach. In the condition where the participants de-
signed the workplan, the two participants decided among themselves
which role to take up for each person.

Workplace Design. The floor plan of the mini warehouse is shown
in Figure 14. There were six types of objects for warehousing, there-
fore, there were six box types (Box A, Box B, Box C, Box D, Box E,
and Box F) plus one lottery box. These boxes needed to be distributed
among 7 locations in the mini warehouse. The rules for workspace
design are as follows:

• The PC station is fixed in the floor plan.
• The lottery box can be placed only at the locations 2,3,4 or 5.
• There are 40 unsorted objects of different types in the lottery

box at the beginning. Among these objects, 5% belong to Box
A, 8% to Box B, 8% to Box C, 10% to Box D, 33% to Box E,

Fig. 16. An example workspace designed by a pair of participants.
The wheelchair person decided to do Task 1 and the runner decided
to do Task 2. Refer to Figure 17 for a screenshot of the workplace
simulation.

and 36% to Box F. Each object either has a six-digit barcode
or a three-digit barcode.
• Depending on the location of the box types placement, either

a six-digit barcode or a three-digit barcode object of that type
will be used. In particular, for boxes placed at location 1, 2
or 7, three-digit barcode object of that type will be put into
the lottery box at the beginning. Otherwise, six-digit barcode
object of that type will be used.

In each experiment, the pair of participants were asked to come up
with a workpspace and workplan design to minimize the time to
finish the tasks. An example workspace and workplan design by a
pair of participants is shown in Figure 16, with the corresponding
real-world simulation shown in Figure 17.

In this example, the wheelchair person decided to do Task 1 and
the runner decided to do Task 2. Since they put Box E and Box F
at location 1 and location 7, the barcodes of objects of type E and
F were three-digit long, and the barcodes of other types of objects
were six-digit long. As a result, the wheelchair person did not spend
too much time in typing the barcodes of objects or type E and F
when doing Task 1. Besides, they placed the lottery box at the same
side of the PC. As a result, the wheelchair person traveled back and
forth between these two locations to get objects from the lottery box,
bringing the objects over to the PC for entering the barcode.

Please refer to our supplementary video for the actual workplace
simulation.
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Table 3. Real human workplace simulation results. The task completion time following the participants’ designs and the generated design are
shown. A design is encoded as a string with 7 characters which refer to the boxes put at locations 1 to 7. For example, “ELABCDF” (denoting the
participants’ design shown in Figure 16) means that Box E is placed at location 1, the lottery box is placed at location 2, etc. The generated design
“EDABLCF” is shown in Figure 15.

ID Participants’ design

Tasks For
Wheelchair
person
and Runner

Completion
Time(s) Generated design

Tasks For
Wheelchair
person
and Runner

Completion
Time(s)

1 ELABCDF 1,2 382 EDABLCF 1,2 366
2 ELDABCF 1,2 444 EDABLCF 1,2 346
3 FLABCDE 1,2 533 EDABLCF 1,2 421
4 ELBADFC 1,2 344 EDABLCF 1,2 312
5 ELABCDF 1,2 430 EDABLCF 1,2 369
6 FLABCDE 1,2 414 EDABLCF 1,2 382
7 FLABCDE 1,2 474 EDABLCF 1,2 430
8 EFLCBAD 1,2 456 EDABLCF 1,2 353
9 FLDABCE 1,2 452 EDABLCF 1,2 392
10 FLABCDE 1,2 396 EDABLCF 1,2 329
11 FLACDBE 1,2 483 EDABLCF 1,2 318
12 DLBCEFA 1,2 359 EDABLCF 1,2 316
13 FLDCBAE 1,2 405 EDABLCF 1,2 368
14 FLDBCEA 1,2 328 EDABLCF 1,2 271
15 ELDCBAF 2,1 373 EDABLCF 1,2 340
16 FLABCDE 2,1 365 EDABLCF 1,2 347
17 FLABCDE 1,2 340 EDABLCF 1,2 285
18 ELCABDF 1,2 474 EDABLCF 1,2 365

Fig. 17. A screenshot of the workplace simulation.

10.2 Workspace and Workplan Synthesis
To validate our approach, we synthesized a feasible workspace and
workplan design for this user study. We mainly considered efficiency
and workload for this mini warehouse optimization. We set the
wheelchair person to have a walking speed of 0.7ms−1 and a low
intolerance to walking and turning. In contrast, we set the runner
person to have a walking speed of 1.25ms−1 and a high intolerance in
walking and turning. We also estimate the typing speed for barcodes
with different lengths in the simulation. We assume that typing a
three-digit barcode takes 1.25s and typing a six-digit barcode takes
2.50s.

Figure 15 shows the workspace design generated by our approach.
To minimize walk and turn effort of both agents, our synthesized
result let the wheelchair person do Task 1, and put the lottery on
the opposite side of the PC. The analysis section contains more
discussion.

10.3 Analysis
We measure the completion time for each condition of experiment,
comparing the participants’ designs with the design generated by our
approach. The completion times and the participants’ workspace de-
signs are shown in Table 3. Most participants assigned the wheelchair
person to do Task 1 and the runner to do Task 2.

We performed paired t-test to compare completion time under the
participants’ design and the generated design. There was a significant
difference in completion time for the participants’ design (414s ±
56s) and the generated design (351s ± 41s); t(17)=6.84, p < 0.001. It
is important to note that the average completion time following the
generated plan is lower than that of the participants’ designs.

This relative large amount of time difference is probably due to
the fact that the participants underestimated or neglected the turning
difficulty of the wheelchair person in their planning. In the survey,
some participants revealed that they put boxes that contained a large
amount of objects near the PC station so as to shorten the travel
distance of the runner. They also aimed to minimize the distance
between the lottery box and the PC station for the wheelchair person.
In contrast, our generated design considered the turning effort for the
wheelchair person and put the lottery box opposite to the PC station.
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Please refer to our supplementary video for the actual workplace
simulation comparison.

11 ADDITIONAL DETAILS OF EVALUATION ON
WORKPLACE DESIGN

As described in the main paper, we invited 15 participants to design
fast food kitchen workspaces, which are compared with our synthesis
results. All participants have some layout design background. They
are aged between 20 to 45; 60% of them are males and 40% are
females. We asked the participants to use our application to design
an aesthetic and efficient workspace for a given fast food kitchen
work-plan. Figure 25 shows the screenshot of our application. Staff
properties and list of tasks they need to complete are shown on the
right. During the desing process, they could run a simulation to see
how the staff agents worked in the current workspace. The evaluation
results are shown in the lower right of the application. Figure 26
shows screenshot of their design and Table 13 show their simulation
results.

To compare the workspaces created by the participants with our
synthesis results, we synthesized 15 different workspaces with the
same work plan using the workspace optimization. Table 14 show
simulation results.

11.1 Discussion of Workplace Design Evaluation
We surveyed our participants about the usage of our application.
Many of them think our simulation model help them better under-
stand how staff agents will interact at the workplace. Instead of
estimating performance metrics manually, they could obtain these
measurements precisely from our simulation model. For improve-
ment, one participant suggested generating several variations of the
current configuration emphasizing different objectives. He believed
that adding this one functionality to our tool will speed up the refine-
ment process.

With customized human behaviors, our tool can help designers
demonstrate and discuss their designs more effectively. They believed
this could save them lots of time in revising their design that targets
customer needs.
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Fig. 18. Fast food kitchen equipment.

Table 4. Equipment used for each task in the fast food kitchen example.

Tasks Equipment Used
(1) Greet customers (j) Drink & food prep, (k) Register
(2) Make drinks (j) Drink & food prep
(3) Check fries expiration (c) Fries incubator
(4) Cook & dry fries (a) Vegetable fryer, (b) French fry rack, (c)Fries incubator
(5) Package fries (c) Fries incubator, (j) Drink & food prep
(6) Check food expiration (h) Cooked food incubator
(7) Make toasted bread (d) Bun pan rack, (e) Bun grill toaster, (h) Cooked food incubator
(8) Cook patties (f) Freezer, (g) Grill station, (h) Cooked food incubator
(9) Assemble burgers (h) Cooked food incubator, (i) Burger-making table, (j) Drink & food prep
(10) Package order & deliver (j) Drink & food prep, (k) Register

Table 5. Fast food order

#Drinks #Fries #Burger
Order 1 1 2 1
Order 2 3 2 2
Order 3 3 3 3
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Fig. 19. Supermarket equipment.

Table 6. Equipment used for each task in the supermarket example.

Tasks Equipment Used
(1) Serve at cashier (a) Register
(2) Go around shelves (b)-(k) Shelves
(3) Serve at seafood counter (l) Seafood
(4) Serve at bakery counter (m) Bakery
(5) Serve at butcher counter (n) Butcher

Table 7. Supermarket customer shopping lists.

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Food Section Bakery
Butcher,
Seafood Bakery Butcher

Butcher,
Bakery

Item Type

Fruit,
Dairy Products,
Personal Care,
Drinks,Dry Goods,
Toys

Electronics,
Dairy Products

Personal Care,Drinks,
Dry Goods,Toys

Electronics,
Pet Food,
Dry Goods,
Toys, Fruit,
Dairy Products

Fruit,
Dairy Products

#Item Wanted 1,2,2,2,1,3,2 1,1,2,2 1,3,3,1,2 1,2,2,2,1,1,3,1 1,2,2,2
Customer 6 Customer 7 Customer 8 Customer 9 Customer 10

Food Section
Bakery,
Butcher

Butcher,
Seafood Butcher

Butcher,
Seafood Bakery

Item Type N/A

Fruit,
Dairy Products,
Personal Care,
Drinks

Electronics,
Dry Goods,
Toys

N/A N/A

#Item Wanted 1,1 1,3,2,1,1,1 1,4,3,3 1,3 1
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Fig. 20. Restaurant equipment.

Table 8. Equipment used for each task in the restaurant example.

Tasks Equipment Used
(1) Serve customer (c)-(e) Tables
(2) Go around with cart (f) Cart
(3) Serve at food counter (a) Food Counter
(4) Checkout with customer (b) Checkout Counter

Table 9. Details of customer groups’ orders in the restaurant example.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
#People 1 3 2 11 3 6 4 2
#Dim sum 1 2 2 7 2 5 3 1
#Fried noodle 1 2 2 4 2 5 3 3

Group 9 Group 10 Group 11
#People 10 4 7
#Dim sum 6 2 5
#Fried noodle 6 2 1

Fig. 21. Donation center equipment.
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Fig. 22. Additional details of the dynamic workplan example.

Table 10. Details of supermarket customers’ shopping lists in the morning. In general, customers shop shelf items more often than going to the
food section.

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5
Food Section Seafood Seafood, Bakery Butcher N/A N/A

ItemType N/A
Fruit, Books,
Sport,
Electronics

Dairy Products,
Pet Food,
Personal Care,
Drinks,
Dry Goods,
Toys

Dairy Products,
Pet Food,
Personal Care,
Drinks,
Dry Goods,
Toys

Fruit,
Books,
Sport,
Electronics

#Item Wanted 1 1,3,2,2,4,1 1,3,1,3,4,1,2 1,1,5,1,3,2 1,1,4,3
Customer 6 Customer 7 Customer 8 Customer 9 Customer 10

Food Section Bakery Butcher, Seafood Butcher, Bakery Bakery Seafood

ItemType

Dairy Products,
Pet Food,
Personal Care,
Drinks,
Dry Goods,
Toys

N/A N/A

Fruit,
Books,
Sport,
Electronics

#Item Wanted 1,3,2,5,3,4 1,1 1,1 1,1,2,3,2,1 1
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Table 11. Supermarket customers’ shopping lists in the afternoon. Since seafood and meat are on sale, customers tend to go to either of these
sections to buy food.

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5
Food Section Seafood Seafood,Bakery Seafood Seafood,Butcher Seafood,Bakery

ItemType N/A
Fruit,Books,
Sport,
Electronics

Dairy Products,
Pet Food,
Personal Care,
Drinks,
Dry Goods,
Toys

#Item Wanted 1 1,1,2,1,3,1 1,3,1,1,2,1,3 1,1 1,1
Customer 6 Customer 7 Customer 8 Customer 9 Customer 10

Food Section Seafood,Butcher Butcher,Seafood Butcher,Bakery Bakery Seafood,Bakery
ItemType
#Item Wanted 1,2 1,1 1,1 1 1,2

Customer 11 Customer 12 Customer 13 Customer 14 Customer 15
Food Section Seafood Seafood,Butcher Seafood,Bakery Seafood Seafood
ItemType N/A N/A N/A N/A N/A
#Item Wanted 1,2 1,3 3 1

Table 12. Customer orders in the robot assistant example. In general, the more people a group has, the more food (either fried noodles or dim sum)
the group will order.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
#People 1 3 2 11 3 6 4 2
#Dim sum 1 2 2 4 2 5 3 1
#Fried noodle 1 2 2 6 2 3 4 2

Group 9 Group 10 Group 11
#People 10 4 7
#Dim sum 3 2 5
#Fried noodle 6 2 1

Fig. 23. Details of inputs and results of Robot Assistant scene. Our optimizer assigned the robot with tasks that involve high movement to relieve
the workload of the other staff agents since the robot has a high walking speed of 1.50ms−1 and a walk intolerance set as zero.
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Fig. 24. Details of inputs and results of the Physical Challenged Staff Member example.

Table 13. Evaluation results. After the participants finished their design, we run simulations on all the workspaces using the Unity game engine to
obtain the simulation time, total walk distance, and total body rotation. We also record number of moves, rotations, and evaluations required for
creating one design. We also run AnyLogic simulations to compute the simulation times.

#Move #Rotation # Evaluation
AnyLogic

Simulation Time (s)
Unity

Simulation Time (s) Total Walk Distance (m) Total Body Rotation (deg)

261 61 24 83 98 50.86 1,148
153 32 19 96 113 71.51 1,145
249 73 3 94 111 62.63 1,242
227 65 12 83 98 50.82 1,280
42 27 2 92 109 66.21 1,380
118 37 10 86 102 50.41 1,348
232 79 24 94 111 63.07 1,165
104 23 7 95 112 72.65 926
88 12 5 82 97 55.58 1,302
169 39 14 91 107 64.21 1,374
59 46 9 92 109 66.68 1,157
83 54 4 87 103 61.35 946
106 24 3 87 103 64.29 1,278
95 15 9 85 100 62.51 965
174 63 11 93 110 58.91 1,370

Table 14. Simulation results of the 15 workspaces synthesized by our workspace optmization given the same workplan used in the evaluation.

AnyLogic
Simulation Time (s)

Unity
Simulation Time (s) Total Walk Distance (m) Total Body Rotation (deg)

86 102 50.84 1,157
85 100 52.83 1,101
82 97 57.91 1,109
85 100 48.80 890
92 108 57.15 975
86 101 59.45 995
90 106 58.14 911
81 96 47.21 963
83 98 62.11 1,119
81 96 49.42 940
85 100 52.36 1,388
90 106 53.76 1,008
82 97 50.06 965
86 102 54.28 961
85 100 64.74 896
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Fig. 25. Screenshot of the application used in the evaluation. Staff properties and the list of tasks assigned to the staff agents are shown on the
right. The evaluation results are shown at the lower right of the application.
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Fig. 26. Screenshots of the participants’ designs in the evaluation.
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